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INTRODUCTION 
 

1.1 Hydraulics: 

Hydraulics (this word has been derived from a Greek word 'Hudour' which means 

water)  

Fluid Mechanics: 

Fluid mechanics may be defined as that branch of Engineering-science which deals 

with the behavior of fluid under the conditions of rest and motion. 

The fluid mechanics may be divided into two parts: Statics and dynamics. 

Statics: The study of incompressible fluids under static conditions. 

Dynamics: It deals with the relations between velocities, accelerations of fluid with 

the forces or energy causing them. 

 

Fluid 

A fluid is a substance which deforms continuously when subjected to external 

shearing force.  

A fluid has the following characteristics: 

1. It has no definite shape of its own, but conforms to the shape of the containing vessel. 

2. Even a small amount of shear force exerted on a liquid/fluid will cause a 

deformation which continues as long as the force continues to be applied. 

A fluid may be classified as follows: 

a) (i) Liquid (ii) Gas (iii) Vapour.  

b) (i) Ideal fluids (ii) Real fluids. 

 

Liquid: It possesses a definite volume 

As the contraction of volume of a liquid under compression is extremely small, it is 

usually ignored and the liquid is assumed to be incompressible.  

A liquid will withstand a slight amount of tension due to molecular attraction between 

the particles which will cause an apparent shear resistance, between two adjacent 

layers. This phenomenon is known as viscosity. 

Gas: It possesses no definite volume and is compressible. 

Vapour. It is a gas whose temperature and pressure are such that it is very near to the 

liquid state (e.g., steam). 

Ideal fluids: An ideal fluid is one which has no viscosity and surface tension and is 

incompressible. In true sense no such fluid exists in nature. However fluids which 

have low viscosities such as water and air can be treated as ideal fluids under certain 

conditions. The assumption of ideal fluids helps in simplifying the mathematical 

analysis. 

Real fluids: A real practical fluid is one which has viscosity, surface tension and 

compressibility in addition to the density. The real fluids are actually available in 

nature. 
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1.2 Dimension: Generalization of “unit” telling us what kind of units are involved in 

a quantitative statement.  

The primary quantities of fluid are: 
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1.3 PHYSICAL PROPERTIES OF FLUIDS 

 

1.3.1 Density 

1. Mass density 

The density (also known as mass density or specific mass) of a liquid may be defined 

as the mass per unit volume (
 𝑚   

𝑉
) at a standard temperature and pressure. It is usually 

denoted by 𝝆 (rho). 

Its units are kg/m
3
 i.e.   𝜌 = (

 𝑚   

𝑉
)  

𝑘𝑔

𝑚3
 

2. Weight density 

The weight density (also known as specific weight) is defined as the weight per unit 

volume at the standard temperature and pressure. It is usually denoted by (𝑤). 
𝑤 =  𝜌. 𝑔 

3. Specific volume 

It is defined as volume per unit mass of fluid. It is denoted by 𝑣. Mathematically, 

𝑣 =
𝑉

𝑚
=
1

𝜌
    
𝑚3

𝑘𝑔
 

1.3.2 Specific Gravity 

Specific gravity is the ratio of the specific weight of the liquid to the specific weight 

of a standard fluid. It is dimensionless and has no units. It is represented by S. 

For liquids, the standard fluid is pure water at 4°C. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟
=
𝑤𝑙𝑖𝑞𝑢𝑖𝑑 

𝑤𝑤𝑎𝑡𝑒𝑟
 

 

Illustrative Example 
Calculate the specific weight, specific mass, specific volume and specific gravity of a 

liquid having a volume of 6 m
3
 and weight of 44 kN. 

Solution: 

Volume of the liquid = 6 m
3
 

Weight of the liquid = 44 kN 

Specific weight, w:                               𝑤 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑
=
44

6
= 7.33    𝑘𝑁 𝑚3⁄  
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Specific mass or mass density,  :    𝜌 =
𝑤

𝑔
=
7.33×1000

9.81
= 747.5 𝑘𝑔 𝑚3⁄  

  

Specific volume,                                 𝑣 =
𝑉

𝑚
=
1

𝜌
=

1

747.5
=  0.00134 𝑚3/𝑘𝑔 

Specific Gravity, S                          𝑆 =
𝑤𝑙𝑖𝑞𝑢𝑖𝑑 

𝑤𝑤𝑎𝑡𝑒𝑟
=
7.333

9.81
 

 

1.3.3 Viscosity 

Viscosity may be defined as the property of a fluid which determines its resistance to 

shearing stresses. It is a measure of the internal fluid friction which causes resistance 

to flow. Viscosity of fluids is due to cohesion and interaction between particles. 

Refer Fig(2). When two layers of fluid, at a distance dy, move one over the other at 

different velocities, say u and u + du, the viscosity together with relative velocity 

causes a shear stress acting between the fluid layers. The top layer causes a shear 

stress on the adjacent lower layer while the lower layer causes a shear stress on the 

 

 

adjacent top layer. This shear stress is proportional to the rate of change of velocity 

with respect to y. It is denoted by 𝜏 (called Tau). 

Mathematically   

𝜏 ∝
𝑑𝑢

𝑑𝑦
 

Or  

𝜏 = 𝜇.
𝑑𝑢

𝑑𝑦
 

where, 𝜇 = Constant of proportionality and is known as coefficient of dynamic 

viscosity or only viscosity. 

So  

𝜇 =
𝜏

𝑑𝑢
𝑑𝑦
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Units of Viscosity: 

In S.I. Units: N.s/m
2
 

[𝜇 =
𝑓𝑜𝑟𝑐𝑒/𝑎𝑟𝑒𝑎

(𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑖𝑚𝑒⁄ ) ×
1

𝑙𝑒𝑛𝑔𝑡ℎ

=
𝑓𝑜𝑟𝑐𝑒/𝑙𝑒𝑛𝑔𝑡ℎ2

1
𝑡𝑖𝑚𝑒

=
𝑓𝑜𝑟𝑐𝑒 × 𝑡𝑖𝑚𝑒

𝑙𝑒𝑛𝑔𝑡ℎ2
] =

𝑁. 𝑠

𝑚2
 

The unit of viscosity is also called poise, One poise = 
1

10
N.s/m

2
 

Note. The viscosity of water at 20°C is 
1

100
  poise or one centipoise. 

 

Kinematic Viscosity: 

Kinematic viscosity is defined as the ratio between the dynamic viscosity and density 

of fluid 

It is denoted by 𝒗 (called nu). Mathematically:  

𝑣 =
𝜇

𝜌
 

Units of kinematic viscosity: 

In SI units: m
2
/s 

Or stokes, one stokes = 0.0001 m
2
/s 

 

Newton's Law of Viscosity 

This law states that the shear stress (𝜏) on a fluid element layer is directly proportional 

to the rate of shear strain. The constant of proportionality is called the co-efficient of 

viscosity. 

𝜏 = 𝜇.
𝑑𝑢

𝑑𝑦
                                     1 

 

Types of fluids 

The fluids may be of the following 

'Refer to Fig. (3) 

1. Newtonian fluids. These fluids follow Newton's viscosity equation (i.e. eq. 1). For 

such fluids 𝜇 does not change with rate of deformation. [ Examples. Water, kerosene, 

air]. 

Newtonian fluids: 𝜏 = 𝜇.
𝑑𝑢

𝑑𝑦
 

2. Non-Newtonian fluids, fluids which do not follow the linear relationship between 

shear stress and rate of deformation given by eqn. 1 are termed as non-Newtonian 

fluids. Such fluids relatively uncommon. [ Examples. Solutions or suspensions, mud, 

blood]. These fluids are generally complex mixtures. 

Non-Newtonian fluids: 𝜏 = 𝜇. (
𝑑𝑢

𝑑𝑦
)
𝑛

 

3. Plastic fluids. its non-Newtonian fluid These substances are represented by straight 

line intersecting the vertical axis Refer to Fig.(3). 

4. Ideal fluid. An ideal fluid is one which is incompressible and has zero viscosity (or 

in other words shear stress is always zero regardless of the motion of the fluid). Thus 

an ideal fluid is represented by the horizontal axis (𝜏 = 0). 

Ideal fluid: 𝜏 = 0 
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Effect of Temperature on Viscosity 

Viscosity is effected by temperature. The viscosity of liquids decreases but that of 

gases increases with increase in temperature. This is due to the reason that in liquids 

the shear stress is due to the inter-molecular cohesion which decreases with increase 

of temperature. In gases the inter-molecular cohesion is negligible and the shear stress 

is due to exchange of momentum of the molecules, normal to the direction of motion. 

The molecular activity increases with rise in temperature and so does the viscosity of 

gas. 

 

Effect of Pressure on Viscosity 

The viscosity under ordinary conditions is not appreciably affected by the changes in 

pressure. However, the viscosity of some oils has been found to increase with increase 

in pressure. 

 

1.3.4 Surface tension 

It results from the attractive forces between molecules. It allows steel to float, droplets 

to form, and small droplets and bubbles to be spherical. Consider the free-body 

diagram of a spherical droplet and a bubble, as shown in Fig. (4). 

The pressure force inside the droplet balances the force due to surface tension around 

the circumference: 

𝑃𝜋𝑟2 = 2𝜋𝑟𝜎 
So 

𝑃 =
2𝜎

𝑟
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Notice that in a bubble there are two surfaces so that the force balance provides 

𝑃 =
4𝜎

𝑟
 

So, if the internal pressure is desired, it is important to know if it is a droplet or a 

bubble. 

A second application where surface tension causes an interesting result is in the rise of 

a liquid in a capillary tube. The free-body diagram of the water in the tube is shown in 

Fig. (5). Summing forces on the column of liquid gives 

 

𝜎𝜋𝐷 𝑐𝑜𝑠𝐵 = 𝜌𝑔
𝜋𝐷2

4
ℎ 

where the right-hand side of the equation is the weight W. This provides the height 

the liquid will climb in the tube: 

ℎ =
4. 𝜎. 𝑐𝑜𝑠𝐵

𝑤.𝐷
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1.3.5 Vapor pressure 

Molecules escape and reenter a liquid that is in contact with a gas, such as water in 

contact with air. The vapor pressure is that pressure at which there is equilibrium 

between the escaping and reentering molecules. If the pressure is below the vapor 

pressure, the molecules will escape the liquid; it is called boiling when water is heated 

to the temperature at which the vapor pressure equals the atmospheric pressure. 

 

1.4 Useful Information  

1-The shear stress [symbol: τ (tau)]  
It is the force per unit surface area that resists the sliding of the fluid layers. The 

common units used of shear stress is (N/m
2
 ≡ Pa) 

 

2-The pressure [symbol: P]  
It is the force per unit cross sectional area normal to the force direction.  

The common units used of shear stress is (N/m
2
 ≡ Pa), (atm) (bar) (Psi) (mmHg). The 

pressure difference between two points refers to (ΔP).  

The pressure could be expressed as liquid height (or head) (h) 

3-The energy [symbol: E]  
Energy is defined as the capacity of a system to perform work or produce heat.  

There are many types of energy such as [Internal energy (U), Kinetic energy (K.E), 

Potential energy (P.E), Pressure energy (Prs.E), and others.  

The common units used for energy is (J ≡ N.m), (Btu), (cal).  

The energy could be expressed in relative quantity per unit mass or mole (J/kg or 

mol).  

 

4-The Power [symbol: P]  

It is the energy per unit time. The common units used for Power is (W ≡ J/s) 

 

5- The flow rate  
5.1-Volumetric flow rate [symbol: Q]

 
 

It is the volume of fluid transferred per unit time.  
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𝑄 = 𝑢 𝐴 
where A: is the cross sectional area of flow normal to the flow direction. The common 

units used for volumetric flow is (m
3
/s), (cm

3
/s), (ft

3
 /s).  

 

5.2-Mass flow rate [symbol: m]  

It is the mass of fluid transferred per unit time.  

�̇� = 𝑄 𝜌 = 𝑢 𝐴 𝜌 
The common units used is (kg/s), (g/s), (lb/s).  

 

1.5 Important Laws  

1-Law of conservation of mass  
“ The mass can neither be created nor destroyed, and it cannot be created from 

nothing”  

 

2-Law of conservation of energy (First law of thermodynamics)  

“ The energy can neither be created nor destroyed, though it can be transformed from 

one form into another”  

 

Newton’s Laws of Motion  
Newton has formulated three law of motion, which are the basic assumption on which 

the whole system of dynamics is based.  

 

 

3-Newton’s first laws of motion  
“Everybody continues in its state of rest or of uniform motion in a straight line, unless 

it is acted upon by some external forces”  

 

4-Newton’s second laws of motion  
“The rate of change in momentum is directly proportional to the impressed force and 

takes place in the same direction in which the force acts”[momentum = mass × 

velocity]  

 

5-Newton’s third laws of motion  

“To every action, there is always an equal and opposite reaction”  
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CHAPTER TWO 
 

 

FLUID STATICS 

The subject of fluid statics involves fluid problems in which there is no relative 

motion between fluid particles. If no relative motion exists between particles of a 

fluid, viscosity can have no effect. 

 

Pressure-Density-Height Relationships.  
The fundamental equation of fluid statics is that relating pressure, density, and vertical 

distance in a fluid. This equation may be derived readily by considering the vertical 

equilibrium of an element of fluid such as the small cube of Fig. 2.1. Let this cube be 

differentially small and have dimensions dx, dy, and dz, and assume that the density of 

the fluid in the cube is uniform. If the pressure upward on the bottom face of this cube 

is p, the force due to this pressure will be given by (𝑝 𝑑𝑥 𝑑𝑦). Assuming an increase 

of pressure in the positive direction of z, the pressure downward on the top face of the 

cube will be (𝑝 + 
𝑑𝑝

𝑑𝑧
𝑑𝑧), and the force due to this pressure will be 

(𝑝 + 
𝑑𝑝

𝑑𝑧
𝑑𝑧)𝑑𝑥 𝑑𝑦. The other vertical force involved is the weight, 𝑑𝑊, of the cube, 

given by 

𝑑𝑊 =  𝑤 𝑑𝑥𝑑𝑦 𝑑𝑧 
The vertical equilibrium of the cube will be expressed by 

(𝑝 + 
𝑑𝑝

𝑑𝑧
𝑑𝑧) 𝑑𝑥 𝑑𝑦 + 𝑤 𝑑𝑥𝑑𝑦 𝑑𝑧 − 𝑝 𝑑𝑥 𝑑𝑦 = 0 

This will be 
𝑑𝑝

𝑑𝑧
= −𝑤 

the fundamental equation of fluid statics, which must 

be integrated for the solution of engineering 

problems. Such integration may be accomplished by 

transposing the terms 𝑤 and 𝑑𝑧, resulting in 
𝑑𝑝

𝑤
= −𝑑𝑧 

which may be integrated as follows : 

∫
𝑑𝑝

𝑤

𝑝1

𝑝2

= −∫ 𝑑𝑧
𝑧1

𝑧2

= ℎ2 − ℎ1 

Gives 

∫
𝑑𝑝

𝑤

𝑝1

𝑝2

= ∆ℎ 

in which 𝑝1 is the greater pressure existing at the 

lower point 1, 𝑝2 the lesser pressure existing at the 

upper point 2, and h the vertical distance between 

these points. The integration of the left-hand side of 

the equation cannot be carried out until 𝑤 =  𝑓(𝑝) 
is known. For gases this relationship may be obtained from certain laws of 

thermodynamics. For liquids the specific weight, 𝑤, is sensibly constant allowing 

integration of the equation to 
𝑝1 − 𝑝2
𝑤

= ∆ℎ    or   𝑝1 − 𝑝2 = 𝑤∆ℎ = 𝜌𝑔∆ℎ                         (1)  
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permitting ready calculation of the increase in pressure in a liquid as depth is gained. 

It should be noted that equation 1 embodies certain basic and familiar facts 

concerning fluids at rest. It shows that, if ℎ = 0, the pressure difference is zero and 

thus pressure is constant over horizontal planes in a fluid. 

Equation 1 also indicates the fact that pressure at a point in a liquid of given density is 

dependent solely upon the height of the liquid above the point, allowing this vertical 

height, or "head," of liquid to be used as an indication of pressure. Thus pressures 

maybe quoted in "cm of mercury," "meter of water/' etc. 

 

Pressure in a Fluid 
In Figure (2.2) a stationary column of fluid of height (h2) and cross-sectional area A, 

where A=Ao=A1=A2, is shown. The pressure above the fluid is Po, it could be the 

pressure of atmosphere above the fluid. The fluid at any point, say h1, must support all 

the fluid above it. It can be shown that the forces at any point in a nonmoving or static 

fluid must be the same in all directions. Also, for a fluid at rest, the pressure or (force 

/ unit area) in the same at all points with the same elevation. For example, at h1 from 

the top, the pressure is the same at all points on the cross-sectional area A1. 

The total mass of fluid for h2, height and ρ density is: (h2 A ρ) (kg)  

The pressure is defined as (P = F/A = h2 ρ g) (N/m
2
 or Pa)  

So the total force of the fluid on area (A) due to the fluid only is: -  

 𝐹 =  ℎ2 𝐴 𝜌 𝑔 (𝑁) 
This is the pressure on A2 due to the weight of the fluid column 

above it. However to get the total pressure P2 on A2, the pressure 

Po on the top of the fluid must be added, 

𝑖. 𝑒. 𝑃2  =  ℎ2 𝜌 𝑔 + 𝑃𝑜 (𝑁/𝑚
2 𝑜𝑟 𝑃𝑎) 

Thus to calculate P1: 

𝑃1  =  ℎ1𝜌 𝑔 + 𝑃𝑜 (𝑁/𝑚
2 𝑜𝑟 𝑃𝑎) 

The pressure difference between points 1 and 2 is: - 

                           P2 – P1 = (h2 ρ g + Po) – (h1 ρ g + Po) 

                      ⇒ P2 – P1 = (h2 – h1) ρ g             see eq.1 

Since it is vertical height of a fluid that determines the pressure in 

a fluid, the shape of the vessel does not affect the pressure. For 

example in Figure (2.3) the pressure P1 at the bottom of all three vessels is the same 

and equal to (h1 ρ g + Po).  

 

Absolute and Relative Pressure 
The term pressure is sometimes associated with different terms such as atmospheric, 

gauge, absolute, and vacuum. The meanings of these terms have to be understood well 

before solving problems in fluid mechanics.  
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1-Atmospheric Pressure 
It is the pressure exerted by atmospheric air on the earth due to its weight. This 

pressure is change as the density of air varies according to the altitudes. Greater the 

height lesser the density. Also it may vary because of the temperature and humidity of 

air. Hence for all purposes of calculations the pressure exerted by air at sea level is 

taken as standard and that is equal to: -  

1 atm = 1.01325 bar = 101.325 kPa 

 

2-Gauge Pressure or Positive Pressure 
It is the pressure recorded by an instrument. This is always above atmospheric. The 

zero mark of the dial will have been adjusted to atmospheric pressure. 

 

3-Vacuum Pressure or Negative Pressure 
This pressure is caused either artificially or by flow conditions. The pressure will be 

less than the atmospheric pressure. 

 

4-Absolute Pressure 
Absolute pressure is the algebraic sum of atmospheric pressure and gauge pressure. 

Atmospheric pressure is usually considered as the datum line and all other pressures 

are recorded either above or below it.  

Absolute Pressure = Atmospheric Pressure + Gauge Pressure 

Absolute Pressure = Atmospheric Pressure – Vacuum Pressure 

For example if the vacuum pressure is 0.3 atm 

Absolute pressure = 1.0 – 0.3 = 0.7 atm 

Note: - 

Barometric pressure is the pressure that recorded from the barometer (apparatus used 

to measure atmospheric pressure).  

3.4 Head of Fluid 
Pressures are given in many different sets of units, such as N/m

2
, or Pa. However a 

common method of expressing pressures is in terms of head (m, cm, mm) of a 

particular fluid. This height or head of the given fluid will exert the same pressure as 

the pressures it represents.  

P = h ρ g.  

Measurement of Fluid Pressure  
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In chemical and other industrial processing plants it is often to measure and control 

the pressure in vessel or process and/or the liquid level vessel.  

The pressure measuring devices are: -  

1- Piezometer tube  
The piezometer consists a tube open at one end to 

atmosphere, the other end is capable of being inserted into 

vessel or pipe of which pressure is to be measured. The 

height to which liquid rises up in the vertical tube gives the 

pressure head directly.  

i.e.    P = h ρ g  

 Piezometer is used for measuring moderate pressures. 

 

2- Manometers  
The manometer is an improved (modified) form of a 

piezometer. It can be used for measurement of comparatively 

high pressures and of both gauge and vacuum pressures.  

Following are the various types of manometers: -  

a- Simple manometer         b- The well type manometer  

c- Inclined manometer       d- The inverted manometer  

e- The two-liquid manometer  

 

 

A)Simple manometer  

It consists of a transparent U-tube containing the fluid A of density (ρA) whose 

pressure is to be measured and an immiscible fluid (B) of higher density (ρB). The 

limbs are connected to the two points between which the pressure difference (P2 - P1) 

is required. If P2 is greater than P1, the interface between the two liquids in limb ❶ 

will be depressed a distance (hm) (say) below that in limb 

❷.  

The pressure at the level a-a must be  

the same in each of the limbs and, therefore:  

P2 + ZmρA g = P1 + (Zm– hm) ρA g + hmρB g  

⇒ Δp = P2 – P1 = hm (ρB – ρA) g  

If fluid A is a gas, the density ρA will 

normally be small compared with the density  

of the manometer fluid pm so that:  

Δp = P2 – P1 = hmρB g 
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B)The well-type manometer  
In order to avoid the inconvenience of having to read two limbs, and in order to 

measure low pressures, where accuracy is of much importance, the well-type 

manometer shown in Figure (2.7) can be used. If Aw and Ac are the cross-sectional 

areas of the well and the column and hm is the increase in the level of the column and 

hw the decrease in the level of the well, then:  

P2 = P1 + (hm + hw) ρ g   or:       Δp = P2 – P1 = (hm + hw) ρ g  

The quantity of liquid expelled from the well is 

equal to the quantity pushed into the column so 

that:  

Awhw = Achm⇒hw = (Ac/Aw) hm 

⇒ Δp = P2 – P1 = ρ g hm (1 + Ac/Aw)  

If the well is large in comparison to the column 

then:  

i.e. (Ac/Aw) →≈0 ⇒Δp = P2 – P1 = ρ g hm 

 

 

 

C) The inclined manometer  

Shown in Figure (2.8) enables the sensitivity of the manometers described previously 

to be increased by measuring the length of the column of liquid. If θ is the angle of 

inclination of the manometer (typically about 10-20°) and L is the movement of the 

column of liquid along the limb, then:  

hm = L sin θ 

If θ = 10°, the manometer reading L is increased by about 5.7 times compared with 

the reading hm which would have been obtained from a simple manometer.  

 

 

 

 

 

 

 

3- Mechanical Gauges  
Whenever a very high fluid pressure is to be measured, and a very great sensitivity a 

mechanical gauge is best suited for these purposes. They are also designed to read 
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vacuum pressure. A mechanical gauge is also used for measurement of pressure in 

boilers or other pipes, where tube manometer cannot be conveniently used.  

There are many types of gauge available in the market. But the principle on which all 

these gauge work is almost the same. The followings are some of the important types 

of mechanical gauges: -  

1- The Bourdon gauge  

2- Diaphragm pressure gauge  

3- Dead weight pressure gauge  

 

The Bourdon gauge  
The pressure to be measured is applied to a curved tube, 

oval in cross-section, and the deflection of the end of 

the tube is communicated through a system of levers to 

a recording needle. This gauge is widely used for steam 

and compressed gases, and frequently forms the 

indicating element on flow controllers. The simple form 

of the gauge is illustrated in Figures (2.9) shows a 

Bourdon type gauge with the sensing element in the form of a helix; this instrument 

has a very much greater sensitivity and is suitable for very high pressures.  

 

FORCES ON SUBMERGED PLANE SURFACES.  
The calculation of the magnitude, direction, and location of the total forces on 

surfaces 

submerged in a liquid is essential in the design of dams, bulkheads, gates, tanks, etc. 

For a submerged, plane, horizontal area the calculation of these force properties is 

simple, because the pressure does not vary over the area;  

 

For non-horizontal planes the problem is complicated by pressure variation. Pressure 

in liquids, however, has been shown to vary linearly with depth (eq.1), resulting in the 

typical pressure diagrams and resultant forces of Fig. 2.10. 
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Now consider the general case of a plane submerged area AB, such as that of Fig. 

2.11, located in any inclined plane X-X. 

 

Let the center of gravity of this area be located as shown, at a depth hg and at a 

distance 

lg from the line of intersection, 0-0, of plane X-X and the liquid surface. 

Calculating the force, 𝑑𝐹, on the small area, 𝑑𝐴, 

𝑑𝐹 =  𝑝𝑑𝐴 =  𝑤ℎ𝑑𝐴 
but ℎ =  𝑙 𝑠𝑖𝑛𝛼, substituting this value for h 

𝑑𝐹 =  𝑤𝑙 𝑠𝑖𝑛 𝛼 𝑑𝐴  
And the total force on the area AB will result from the integration of this expression, 

giving 

𝐹 =  𝑤 𝑠𝑖𝑛 𝛼 ∫ 𝑙𝑑𝐴
𝐴

 

                         (2) 

but ∫ 𝑙𝑑𝐴
𝐴

 
 is recognized as the statical moment of the area AB, about the line 0-0 

which is also given by the product of the area, A, 

and the perpendicular distance, lg , from 0-0 to the center of gravity of the area. Thus 

∫ 𝑙𝑑𝐴
𝐴

 

= 𝑙𝑔𝐴 

and substituting this in eq. 2 

𝐹 =  𝑤𝐴𝑙𝑔 𝑠𝑖𝑛 𝛼 

but ℎ𝑔  =  𝑙𝑔 𝑠𝑖𝑛 𝛼, giving 

𝐹 =  𝑤ℎ𝑔𝐴                            (3) 
indicating that the magnitude of the resultant force on a submerged plane area may be 

calculated by multiplying the area, 𝐴, by the pressure at its center of gravity, 𝑤ℎ𝑔 . 

The magnitude of the resultant force having been calculated, its direction and location 

must be considered. Its direction, is normal to the plane, and its point of application 

may be found if the moment of the force can be calculated and divided by the 

magnitude of the force. 



17 
 

Referring again to Fig. 2.11, the moment, 𝑑𝑀, of the force, 𝑑𝐹, about the line 0-0 is 

given by 

𝑑𝑀 =  𝑙𝑑𝐹 
in which 

𝑑𝐹 =  𝑤𝑙 𝑠𝑖𝑛 𝛼 𝑑𝐴 
Therefore, by substitution, 

𝑑𝑀 =  𝑤𝑙2 𝑠𝑖𝑛 𝛼 𝑑𝐴 
and integrating to obtain the total moment, 𝑀, 

𝑀 =  𝑤 𝑠𝑖𝑛 𝛼 ∫ 𝑙2𝑑𝐴
𝐴

 

 

in which ∫ 𝑙2𝑑𝐴
𝐴

 
  is the moment of inertia I of the area A , about the line 0-0, thus 

𝐼𝑜−𝑜 = ∫ 𝑙2𝑑𝐴
𝐴

 

 

So: 
𝑀 =  𝑤 𝑠𝑖𝑛 𝛼 𝐼𝑜−𝑜 

Designating the point of intersection of the resultant force and 

the plane as the "center of pressure" and its distance from 0-0 as 

lp, lp will be given by 

𝑙𝑝 =
𝑀

𝐹
 

in which  

𝑀 =  𝑤 𝑠𝑖𝑛 𝛼 𝐼𝑜−𝑜 
and 

𝐹 =  𝑤𝐴𝑙𝑔 𝑠𝑖𝑛 𝛼 
Substituting these values above gives 

𝑙𝑝 =
𝑀

𝐹
=
𝑤 𝑠𝑖𝑛 𝛼 𝐼𝑜−𝑜
𝑤𝐴𝑙𝑔 𝑠𝑖𝑛 𝛼

=
𝐼𝑜−𝑜
𝑙𝑔 𝐴

 

0, and completing-g the resultant force in respect to the line 0locatinthus  

the solution of the general problem. 

The above equation may be made more usable by .placing it in terms of the moment 

of inertia, Ig , about an axis parallel to 0-0 through the center of gravity of the area. 

Using the equation for 

transferring moment of inertia of an area from one axis to another, 

𝐼𝑜−𝑜 = 𝐼𝑔 + 𝑙𝑔
2𝐴 

and substituting in the equation for lp 

𝑙𝑝 =
𝐼𝑔 + 𝑙𝑔

2𝐴

𝑙𝑔
 𝐴

=
𝐼𝑔

𝑙𝑔
 𝐴
+ 𝑙𝑔

 
 

which may be written as 

𝑙𝑝 =
𝐼𝑔

𝑙𝑔
 𝐴
+ 𝑙𝑔

 
 

ℎ𝑝 = 𝑙𝑝𝑠𝑖𝑛𝛼 

 

ILLUSTRATIVE PROBLEM 

A circular gate 2.4 m in diameter lies in a plane sloping 60 with the horizontal. 

If water stands above the center of the gate to a depth of 3 m, calculate the magnitude, 

direction, and location of the total force exerted by water on gate. 
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Direction: normal to gate 

Magnitude: 

𝐹 =  𝑤ℎ𝑔𝐴 

𝐹 =  9810 × 3 ×
𝜋

4
(2.4)2 = 133070 𝑁 

Location 

𝐼𝑔 =
𝜋

64
(2.4) 4 = 1.62    𝑚4 

𝑙𝑔 =
3

sin 60
=

3

0.866
= 3.46  𝑚 

 

𝐴 =
𝜋

4
(2.4)2 = 4.52   𝑚2 

𝑙𝑝 =
𝐼𝑔

𝑙𝑔
 𝐴
+ 𝑙𝑔 =

 
1.62

3.46 × 4.52
+ 3.46

= 3.56  𝑚 

ℎ𝑝 = 𝑙𝑝 sin 60 = 3.56 × 0.866 = 3.08 𝑚 

Therefore force passes through a point (c.p.) 

located 3.08 𝑚 below the free surface 
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For vertical plane surfaces 

 

See fig. 2.12 

 

ℎ𝑝 =
𝐼𝑔

ℎ𝑔
 𝐴
+ ℎ𝑔

 
 

 

 

 

 

 

 

 

 

 

 

Curved surfaces  
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The total forces on submerged curved areas cannot be calculated by the foregoing 

methods. These forces may be readily obtained, however, by calculating the 

horizontal and vertical components of the forces as indicated below. 

of force on the area AB  vertical component the 2.13he curved area, AB, of Fig. See t

is simply the weight of liquid, ABCD, thus 

𝐹𝑉  =  𝑊𝐴𝐵𝐶𝐷 
will  line of action of this forceand the 

pass through the center of gravity of 

ABCD. 

 

of force  horizontal componentThe 

may be calculated 

by the methods of vertical plane 

surfaces.  

𝐹𝐻 = 𝐴𝑤ℎ𝑔 

Its location:   ℎ𝑝 =
𝐼𝑔

ℎ𝑔
 𝐴
+ ℎ𝑔

 
 

, may be resultant force, Fnd the A

obtained by composition of the 

horizontal and vertical components 

𝐹 = √𝐹𝑉
2 + 𝐹𝐻

2 

angle of direction of  the Then the 

 resultant force 

𝜃 = tan−1
𝐹𝑉
 

𝐹𝐻
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Buoyancy 

Whenever a body is immersed wholly or partially in a fluid; it is subjected to an 

upward force 

which tends to lift (or buoy) it up. This tendency for an immersed body to be lifted up 

in the fluid is due to an upward force opposite to action of gravity is known as 

buoyancy. The force tending to lift the body under such conditions is known as 

buoyant force or force of buoyancy or up thrust. The magnitude of the buoyant force 

can be determined by Archimedes principle which states as follows: 

"The buoyant force acting on a body immersed in a fluid is equal to the weight of the 

fluid displaced by the body, and it acts upward through the centroid of the displaced 

volume." 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 =  𝑏𝑢𝑜𝑦𝑎𝑛𝑡 𝑓𝑜𝑟𝑐𝑒 
 

For floating bodies, the weight of the entire body must be equal to the buoyant force, 

which is the weight of the fluid whose volume is equal to the volume of the 

submerged portion of the floating body. That is 

 
𝑇𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑 𝑖𝑛 𝑎 𝑓𝑙𝑢𝑖𝑑 (𝑊) =  𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑(𝐹𝐵) 

(𝑊) = (𝐹𝐵) 
𝜌𝑏𝑜𝑑𝑦 × 𝑔 × 𝑉𝑇𝑜𝑡𝑎𝑙 𝑏𝑜𝑑𝑦 = 𝜌𝑓 × 𝑔 × 𝑉𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑏𝑜𝑑𝑦 

𝜌𝑏𝑜𝑑𝑦

𝜌𝑓
=
𝑉𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑏𝑜𝑑𝑦

𝑉𝑇𝑜𝑡𝑎𝑙 𝑏𝑜𝑑𝑦
 

 

Therefore, the submerged volume fraction of a floating 

body is equal to the ratio of the average density of the body 

to the density of the fluid. Note that when the density ratio 

is equal to or greater than one, the floating body becomes 

completely submerged.  

It follows from these discussions that: a body immersed in 

a fluid  

(1) Remains at rest at any point in the fluid when its 

density is equal to the density of the fluid 

(2) Sinks to the bottom when its density is greater than the 

density of the fluid 

(3) Rises to the surface of the fluid and floats when the 

density of the body is less than the density of the fluid (see 

the Fig.). 

The buoyant force is proportional to the density of the fluid, and thus we might think 

that the buoyant force exerted by gases such as air is negligible. 

For example, the volume of a person is about 0.1 m
3
, and taking the density of air to 

be 1.2 kg/m
3
, the buoyant force exerted by air on the person is 

𝐹𝐵 = 𝜌𝑓 × 𝑔 × 𝑉 =  (1.2 𝑘𝑔 𝑚
3⁄ )(9.81 𝑚 𝑠2⁄ )(0.1 𝑚3) =  1.2 𝑁 

The weight of an 80-kg person is: 80 ×  9.81 =  788 𝑁.  

Therefore, ignoring the buoyancy in this case results in a simple 

error in weight which is negligible.  

But the buoyancy effects in gases dominate some important natural 

phenomena such as the rise of warm air in a cooler environment and 

the rise of hot-air or helium balloons. A helium balloon, for 

example, rises as a result of the buoyancy effect until it reaches an 

altitude where the density of air (which decreases with altitude) 
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equals the density of helium in the balloon ignoring the weight of the balloon’s skin. 

Centre of Buoyancy 

The point of application of the force of buoyancy on the body is known as the centre 

of buoyancy. It is always the centre of gravity of the volume of fluid displaced. 

 

 

Example 1: A body of dimensions 1.5 m x 1m x2 m. weighs 1962 N in water. Find 

its weight 

in air. What will be its specific gravity? 

 

Example 2: A wooden block of specific gravity 0.7 and having a size of 2 𝑚 ×
 0.5𝑚 ×  0.25 𝑚 flouting in water. Determine the volume of concrete of specific 

weight 25 kN/m
3
, that may be placed which will immerse the (i) block completely in 

water and (ii) block and concrete completely in water. 
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CHAPTER THREE 

DIMENSIONAL ANALYSIS 
 

Dimensions and units 

A dimension is a measure of a physical quantity 

(without numerical values), while a unit is a way to 

assign a number to that dimension. For example, 

length is a dimension that is measured in units such as 

meters (m), feet (ft), centimeters (cm), kilometers 

(km), etc. (Fig).  

 

 

 

There are seven primary dimensions (also called fundamental or basic dimensions): 

mass, length, time, temperature, electric current, amount of light, and amount of 

matter. 

All nonprimary dimensions can be formed by some combination of the seven 

primary dimensions. For example, force has the same dimensions as mass times 

acceleration (by Newton’s second law). Thus, in terms of primary dimensions, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimensional Homogeneity 

We’ve all heard the old saying; (you can’t add 

apples and oranges) (Fig). This is actually a 

simplified expression of a far more global and 

fundamental mathematical law for equations, the 

law of dimensional homogeneity, stated as 

Every additive term in an equation must have the 

same dimensions. 
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Dimensional analysis and similarity 

There are three primary purposes of dimensional analysis: 

1. To generate nondimensional parameters that help in the design of experiments 

(physical and/or numerical) and in the reporting of experimental results 

2. To obtain scaling laws so that prototype performance can be predicted from 

model performance 

3. To (sometimes) predict trends in the relationship between parameters 

 

In many cases in real-life engineering, the equations are either not known or too 

difficult to solve; oftentimes experimentation is the only method of obtaining reliable 

information. 

In most experiments, to save time and money, tests are performed on a geometrically 

scaled model, rather than on the full-scale prototype. In such cases, care must be 

taken to properly scale the results. We introduce here a powerful technique called 

dimensional analysis. 
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Before discussing the technique of dimensional analysis, we first explain the principle 

of similarity. There are three necessary conditions for complete similarity between a 

model and a prototype. The first condition is  

 Geometric similarity—the model must be the same shape as the prototype, 

but may be scaled by some constant scale factor. The second condition is 

 Kinematic similarity, which means that the velocity at any point in the model 

flow must be proportional (by a constant scale factor) to the velocity at the 

corresponding point in the prototype flow, for kinematic similarity the velocity 

at corresponding points must scale in magnitude and must point in the same 

relative direction. The third similarity condition is that  

 Dynamic similarity: Dynamic similarity is achieved when all forces in the 

model flow scale by a constant factor to corresponding forces in the prototype 

flow. 

 

(All three similarity conditions must exist for complete similarity to be ensured) 
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Suppose, for example, that the engineers in the above example use a water tunnel instead of a 

wind tunnel to test their one-fifth scale model. Using the properties of water at room 

temperature (20°C is assumed), the water tunnel speed required to achieve similarity is easily 

calculated as  

 

 

 

 

 

As can be seen, one advantage of a water tunnel is that the required water tunnel speed is 

much lower than that required for a wind tunnel using the same size model. 

 

The method of repeating variables and the Buckingham pi theorem 

We have seen the usefulness and power of dimensional analysis. Now we are ready to 

learn how to generate the nondimensional parameters, i.e., the П’s. There are several 

methods that have been developed for this purpose, but the most popular (and 

simplest) method is the method of repeating variables, popularized by Edgar 

Buckingham (1867–1940). 

We can think of this method as a step-by-step procedure for obtaining nondimensional 

parameters. 
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These steps are explained in figure (a) and in detail as we work through an example, 

as the best way to learn is by example and practice.  

 

 

 

 

 

 

For a simple first example, 

consider a ball falling in a vacuum. 

Let us pretend that we do not know 

much physics concerning falling 

objects. Elevation z of the ball must 

be a function of time t, initial 

vertical speed w0, initial elevation 

z0, and gravitational constant g 

(Fig). The beauty of dimensional 

analysis is that the only other thing 

we need to know is the primary 

dimensions of each of these 

quantities. As we go through each 

step of the method of repeating 
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variables, we explain some of the subtleties of the technique in more detail 

using the falling ball as an example. 

 

Step 1 

There are five parameters (variables and constants) in this problem; n = 5. They 

are listed in functional form, with the dependent variable listed as a function of 

the independent parameters: 

𝐿𝑖𝑠𝑡 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝑧 =  𝑓(𝑡, 𝑤0, 𝑧0, 𝑔)            𝑛 =  5 

Step 2 

The primary dimensions of each parameter are listed here. We recommend 

writing each dimension with exponents since this helps later. 

𝑧 = {𝐿1}             𝑡 = {𝑡1}             𝑤0 = {𝐿
1𝑡−1}              𝑧0 = {𝐿

1}         𝑔
= {𝐿1𝑡−2} 

Step 3 

As a first guess, j is set equal to 2, the number of primary dimensions 

represented in the problem (L and t). 

Reduction:             j = 2 

If this value of j is correct, the number of П’s predicted by the Buckingham 

Pi theorem is 

Number of expected П’s:         𝑘 = (𝑛 − 𝑗) = (5 − 2) = 3 

Step 4 

We need to choose two repeating parameters since j = 2. (Several guidelines 

about choosing repeating parameters are listed in figure (b). 

The wisest choice of two repeating parameters is w0 and z0. 

Repeating parameters:       w0 and z0 

 

 

 

 

Step 5 

Now we combine these repeating parameters into products with each of the 

remaining parameters, one at a time, to create the П’s. The first П is always the 

dependent P and is formed with the dependent variable z. 

Dependent П:            П1 =  𝑧𝑤0
𝑎1𝑧0

𝑏1                    1 

Where a1 and b1 are constant exponents that need to be determined. We apply 

the primary dimensions of step 2 into Eq. 1 and force the П to be dimensionless 

by setting the exponent of each primary dimension to zero: 

П1 = {𝐿
0𝑡0} =  {𝑧𝑤0

𝑎1𝑧0
𝑏1} = 𝐿1(𝐿1𝑡−1)𝑎1(𝐿1)𝑏1 

We equate the exponents of each primary dimension independently to solve for 

exponents a1 and b1 

𝑇𝑖𝑚𝑒:         {𝑡0} = {𝑡−𝑎1}           − 𝑎1 = 0        𝑎1 = 0 

𝐿𝑒𝑛𝑔𝑡ℎ:     {𝐿0} = {𝐿1𝐿𝑎1𝐿𝑏1}  → 0 = 1 + 𝑎1 + 𝑏1  → 𝑏1 = −1 − 𝑎1 → 𝑏1
= −1 

Equation 1 becomes:   П1 =
𝑧

𝑧0
 

In similar fashion we create the first independent П (П2) by combining the 

repeating parameters with independent variable t. 
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П2 = 𝑡𝑤0
𝑎2𝑧0

𝑏2 

П2 =
𝑡𝑤0

 

𝑧0
  

Finally we create the second independent П (П3) by combining the repeating 

parameters with g and forcing the П to be dimensionless 

П3 = 𝑔𝑤0
𝑎3𝑧0

𝑏3 

 

П3 =
𝑔𝑧0

 

𝑤0
2  

Step 6 

We are finally ready to write the functional relationship between the 

nondimensional parameters. 

П1 = 𝑓 (П2, П3) →
𝑧

𝑧0
= 𝑓 (

𝑡𝑤0
 

𝑧0
 ,
𝑔𝑧0

 

𝑤0
2 ) 

 

 

(The method of repeating variables cannot predict the exact mathematical form 

of the equation) 

 

 

 

 

Example:     friction in a pipe 

Consider flow of an incompressible 

fluid of density 𝜌 and viscosity 𝜇 

through a long, horizontal section of 

round pipe of diameter D. The velocity 

profile is sketched in the Fig.; V is the 

average speed across the pipe cross 

section, which by conservation of mass 

remains constant down the pipe. For a 

very long pipe, the flow eventually becomes hydrodynamically fully 

developed, which means that the velocity profile also remains uniform down 

the pipe. 

Because of frictional forces between the fluid and the pipe wall, there exists a 
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shear stress 𝜏𝑤 on the inside pipe wall as sketched. The shear stress is also 

constant down the pipe in the fully developed region. We assume some 

constant average roughness height 𝜀 along the inside wall of the pipe. Develop 

a nondimensional relationship between shear stress 𝜏𝑤and the other parameters 

in the problem. 
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Solution: 
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CHAPTER FOUR 
FLUID DYNAMIC 

 

Methods of Describing Fluid Motion 

The fluid motion is described by two methods. They are (i) Lagrangian Method, and 

(ii) Eulerian Method. In the Lagrangian method, a single fluid particle is followed 

during its motion and its velocity, acceleration, density, etc., are described. In case of 

Eulerian method, the velocity, acceleration, pressure, density etc., are described at a 

point in flow field. The Eulerian method is commonly used in fluid mechanics. 

 

Types of Fluid Flow 

Fluids may be classified as follows: 

1. Steady and unsteady flows 

2. Uniform and non-uniform flows 

3. One, two and three dimensional flows 

4. Rotational and irrotational flows  

5. Laminar and turbulent flows 

6.  Compressible and incompressible flows. 

 

1- Steady and Unsteady Flows 

Steady flow: The type of flow in which the fluid characteristics like velocity, 

pressure, density, etc. at a point do not change with time is called steady flow. 

Example flow of liquid at a constant flow rate and has a velocity equation in the form 

u=ax
2
 +bx + c which is independent of time t). 

Unsteady flow: It is that type of flow in which the velocity, pressure or density at a 

point change with time.  

The flow in a pipe whose valve is being opened or closed gradually (velocity equation 

is in the form u = ax
2
 + bxt). 

 

2-  Uniform and Non-uniform Flows 

Uniform flow: The type of flow, in which the velocity at any given time does not 

change with respect to space, is called uniform flow.  

Example: flow through a straight pipe of constant diameter 

Non-uniform flow: It is that type of flow in which the velocity at any given time 

changes with respect to space. 

Example: Flow around a uniform diameter pipe-bend or a canal bend. 

 

      3-     One, Two and Three Dimensional Flows 

One dimensional flow: It is that type of flow in which the flow parameter such as 

velocity is 

function of time and one space co-ordinate only 

Example: Flow in a pipe. 

Two dimensional flow: The flow in which the velocity is a function of time and two 

rectangular space coordinates is called two dimensional flow.  

Examples: (i) Flow between parallel plates of infinite extent, 

                  (ii) Flow in the main stream of a wide river. 

Three dimensional flow: It is that type of flow in which the velocity is a function of 

time and three perpendicular directions.  
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Examples: Flow in a prismatic open channel in which the width and the water depth 

are of the same order of magnitude. 

4- Rotational and Irrotational Flows 

Rotational flow: A flow is said to be rotational if the fluid particles while moving in 

the direction of flow rotate about their mass centers.  

Example: Flow near the solid boundaries is rotational. 

Irrotational flow: A flow is said to be irrotational if the fluid particles while moving 

in the direction of flow do not rotate about their mass centers. Flow outside the 

boundary layer is generally considered irrotational. 

Example: Flow above a drain hole of a stationary tank or a wash basin. 

 

Note: If the flow is irrotational as well as steady, it is known as Potential flow. 

 

5- Laminar and Turbulent Flows 

Laminar and turbulent flows are characterized on the basis of Reynolds number  

For Reynolds number (Re) < 2300    ... flow in pipes is laminar, 

For Reynolds number (Re) > 4000    ... flow in pipes is turbulent 

For Re between 2000 and 4000         ... flow in pipes may be laminar or turbulent.  

 

6- Compressible and Incompressible Flows 

Compressible flow: It is that type of flow in which the density (𝜌) of the fluid 

changes from point to point (or in other words density is not constant for this flow).  

Example: Flow of gases through orifices, nozzles, gas turbines, etc. 

 

Incompressible flow: It is that type of flow in which density is constant for the fluid 

flow; liquids are generally considered flowing incompressibly. 

 

Continuity Equation 

The equation based on the principle of conservation of mass is called continuity 

equation. Thus for a fluid flowing through the pipe at all the cross-section, the 

quantity of fluid per second is constant. 

Consider two cross-sections of a pipe as shown in Fig.  

Let 𝑢1= Average velocity at cross-section l-l 

       𝜌1 = Density at section 1-1 

      A1 = Area of pipe at section l-l 

 

And u2, 𝜌2, A2 are corresponding values at section, 2-2.  

Then rate of flow at section l-l = 𝑢1𝜌1𝐴1  
        Rate of flow at section 2-2 = 𝑢2𝜌2𝐴2 
According to law of conservation of mass 

Rate of flow at section l-l = Rate of flow at section 2-2 

Or                    𝑢1𝜌1𝐴1 = 𝑢2𝜌2𝐴2 
The above equation is applicable to the compressible as 

well as incompressible fluids and is called Continuity Equation. If the fluid is 

incompressible, then 𝜌1 =  𝜌2 and continuity equation reduces to 

𝑢1𝐴1 = 𝑢2𝐴2 

𝑄1 = 𝑄2 
Where Q is the discharge (the volume of fluid flowing across the section per second) 
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EQUATIONS OF MOTION 

According to Newton’s second law of motion, the net force Fx acting on a fluid 

element in the direction of x is equal to mass of the fluid element multiplied by the 

acceleration ax in the x-direction. Thus mathematically: 

𝐹𝑥
 = 𝑚 × 𝑎𝑥 

In the fluid flow, the following forces are present: 

1. 𝐹𝑔, gravity force. 

2. 𝐹𝑝, the pressure force. 

3. 𝐹𝑣 , force due to viscosity. 

4. 𝐹𝑡, force due to turbulence, 

5. 𝐹𝑐, force due to compressibility. 

The net force: 

𝐹𝑥 = (𝐹𝑔)𝑥
+ (𝐹𝑝)𝑥 +

(𝐹𝑣)𝑥 + (𝐹𝑡)𝑥 + (𝐹𝑐)𝑥 

 If the force due to compressibility, 𝐹𝑐 is negligible, the resulting net force 

𝐹𝑥 = (𝐹𝑔)𝑥
+ (𝐹𝑝)𝑥 +

(𝐹𝑣)𝑥 + (𝐹𝑡)𝑥 

            and equation of motions are called Reynolds’s equations of motion. 

 For flow, where (𝐹𝑡) is negligible, the resulting equations of motion are known 

as Navier-Stokes Equation: 𝐹𝑥 = (𝐹𝑔)𝑥
+ (𝐹𝑝)𝑥 +

(𝐹𝑣)𝑥 

 If the flow is assumed to be ideal, viscous force (𝐹𝑣) is zero and equation of 

motions are known as Euler's equation of motion. 𝐹𝑥 = (𝐹𝑔)𝑥
+ (𝐹𝑝)𝑥 
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Velocity and acceleration of fluid flow particle 

The velocity of a particle moving along a streamline in a fluid flow (see fig.) may be 

expressed by 

𝑢 =
𝑑𝑙

𝑑𝑡
 

In which (see Fig) dl is the distance covered by the particle 

in time dt.  

If the velocity changes, an acceleration, a, exists 

One may be think that acceleration is zero in steady flow 

since acceleration is the rate of change of velocity with 

time, and in steady flow there is no change with time. Well, 

a garden hose nozzle tells us that this understanding is not 

correct. Even in steady flow and thus constant mass flow 

rate, water accelerates through the nozzle (see the Fig). 

Steady simply means no change with time at a specified 

location, but the value of a quantity may change from one 

location to another. In the case of a nozzle, the velocity of 

water remains constant at a specified point, but it changes 

from the inlet to the exit (water accelerates along the 

nozzle). Mathematically, this can be expressed as follows: 

We take the velocity u of a fluid particle to be a function of 

l and t.  

Taking the total differential of 𝑢 = 𝑓(𝑙, 𝑡)  

𝑑𝑢 =
𝜕𝑢

𝜕𝑙
𝑑𝑙 +

𝜕𝑢

𝜕𝑡
𝑑𝑡 

And dividing both sides by 𝑑𝑡: 
𝑑𝑢

𝑑𝑡
=
𝜕𝑢

𝜕𝑙

𝑑𝑙

𝑑𝑡
+
𝜕𝑢

𝜕𝑡
 

 

𝑎 =
𝜕𝑢

𝜕𝑙

𝑑𝑙

𝑑𝑡
+
𝜕𝑢

𝜕𝑡
 

In which the first term is called "convective" acceleration, and the second "local" 

acceleration. Obviously, local acceleration is a term peculiar to unsteady flow and 

vanishes from the above equation when it is applied to steady flow. 

In steady flow  
𝜕𝑢

𝜕𝑡
= 0, the acceleration becomes 

𝑎𝑠 =
𝜕𝑢

𝜕𝑙

𝑑𝑙

𝑑𝑡
= 𝑢

𝜕𝑢

𝜕𝑙
 

Where 𝑢 =
𝜕𝑙

𝜕𝑡
 if we are following a fluid particle as it moves along a streamline, 

Therefore, acceleration in steady flow is due to the change of velocity with position. 

 

Euler's Equation 

By applying Newton's law to the motion of fluid masses, 

Leonhard Euler (1750) laid the groundwork for the study 

of the dynamics of ideal fluids.  

Consider a differentially small section of streamtube 

having the dimensions shown in Fig. The forces tending 

to accelerate the fluid mass contained therein are:  

(1) The component of weight in the direction of motion, 

and  
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(2) The forces on the ends of the element in the direction of motion due to pressure.  

Assuming that motion is in an upward direction and that pressure and velocity 

increase in this direction, the force 𝑑𝐹𝑊 due to the weight of the element is given by 

𝑑𝐹𝑊 = −𝜌𝑔 𝑑𝑙 𝑑𝐴 cos 𝛼 = −𝜌𝑔 𝑑𝑙 𝑑𝐴 
𝑑𝑧

𝑑𝑙
 

The force𝑑𝐹𝑝, in the direction of motion, due to the pressure on the ends of the 

element, is 

𝑑𝐹𝑝 = 𝑝 𝑑𝐴 − (𝑝 +
𝜕𝑝

𝜕𝑙
𝑑𝑙) 𝑑𝐴 = −

𝜕𝑝

𝜕𝑙
𝑑𝑙 𝑑𝐴 

The mass 𝑑𝑀 of fluid being accelerated is 

𝑑𝑀 =  𝜌 𝑑𝑙 𝑑𝐴 
And the total acceleration (𝑎) is 

𝑎 = 𝑢
𝜕𝑢

𝜕𝑙
+
𝜕𝑢

𝜕𝑡
 

And for study flow  

𝑎 = 𝑢
𝑑𝑢

𝑑𝑙
 

Substituting the above values in the Newtonian equation, 

𝑑𝐹𝑊 + 𝑑𝐹𝑝 = 𝑑𝑀 𝑎 

there results 

−(𝜌𝑔 𝑑𝑙 𝑑𝐴 
𝑑𝑧

𝑑𝑙
) − (

𝜕𝑝

𝜕𝑙
𝑑𝑙 𝑑𝐴) = (𝜌 𝑑𝑙 𝑑𝐴) 

𝑢𝑑𝑢

𝑑𝑙
 

Dividing by 𝜌 𝑑𝑙 𝑑𝐴 gives: 

𝑔
𝑑𝑧

𝑑𝑙
 +
𝑑𝑝

𝜌𝑑𝑙
 + 
𝑢𝑑𝑢

𝑑𝑙
  =  0 

 
𝑑𝑝

𝜌
 +  𝑢𝑑𝑢 + 𝑔𝑑𝑧 =  0                     2 

the fundamental equation of steady fluid motion. By dividing this equation by g an 

alternate form of the equation is obtained 
𝑑𝑝

𝑤
 + 
𝑢𝑑𝑢

𝑔
+ 𝑑𝑧 =  0                        3 

 

Bernoulli's Equation  
Euler's equation may be integrated along the streamtube with the following result 

∫
𝑑𝑝

𝜌
 +  ∫ 𝑢𝑑𝑢 + ∫𝑔𝑑𝑧  =  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

and if the fluid is a liquid, or a gas flowing with 

negligible change of density, the integrations may be 

carried out giving 

𝑝

𝜌
 + 
𝑢2

2
+ 𝑔𝑧 =  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

or, multiplying by 𝜌: 

𝑝 + 𝜌
𝑢2

2
+ 𝜌𝑔𝑧 =  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡                     4 

or, dividing by 𝑤: 

𝑝

𝑤
 + 
𝑢2

2𝑔
+ 𝑧 =  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡                          5 
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Now from the Bernoulli equation it becomes evident that the sum of three terms 

involving pressure, velocity, and vertical elevation will also be a constant at every 

point along the streamtube. 

Writing equation 5 between two points on the typical streamtube of Fig. 3.3 

𝑝1
𝑤
 + 
𝑢1
2 

 

2𝑔
+ 𝑧1  =

𝑝2
𝑤
 + 
𝑢2
2

2𝑔
+ 𝑧2 

The Bernoulli terms in equation 5 thus are seen to have the dimensions of meter, or 

"meter of the fluid flowing," since 𝑤, the specific weight of the flowing fluid, appears 

in one of the terms. The Bernoulli terms in equation 4 will have the dimensions of 

pressure (Newton per square meter) and are designated respectively as pressure or 

(static pressure), velocity pressure and potential pressure. 

Bernoulli's equation gives further aid in the interpretation of streamline pictures, 

equations 4 and 5 indicating that, when velocity increases, the sum of pressure and 

potential head must decrease. So where velocity is high pressure is low. 

 

Application of Bernoulli's equation 

a)𝑢 = √2𝑔ℎ 

The above equation may be derived from Bernoulli's 

equation by considering steady flow through the reservoir 

and orifice of Fig. Taking section 1 at the free reservoir 

surface, section 2 in the jet immediately outside of the 

orifice, and the datum plane at the center of the orifice, 

Bernoulli's equation may be written as: 

𝑝1
𝑤
 + 
𝑢1
2 

 

2𝑔
+ 𝑧1  =

𝑝2
𝑤
 + 
𝑢2
2

2𝑔
+ 𝑧2 

But, since the tank is very large compared to the orifice, 

𝑢1
  will be very small and when squared usually becomes negligible. The pressure on 

the reservoir surface, 𝑝1, is atmospheric and may be taken as zero. Atmospheric 

pressure surrounds the free jet, and thus the pressure in the jet at section 2 will be 

zero. Obviously, 𝑧1 = h and 𝑧2 = 0; therefore, the Bernoulli equation becomes: 

0 +  0 + ℎ = 0 + 
𝑢2
2

2𝑔
+ 0 

Giving 

𝑢2 = √2𝑔ℎ 

b) Another useful special application of the 

Bernoulli principle is to the streamtube 

which approaches and remains adjacent to 

a solid body placed in a flowing fluid (Fig). 

Let this streamtube have an infinitesimal 

cross section and be represented by the 

streamline AB. Because of the interference 

of the body, the fluid particles moving on the streamline AB will decelerate as they 

approach the body and will temporarily come to rest at the point S, called the 

stagnation point; they then will move around the contour of the body with a variation 

in velocity approximately as shown on the figure. From Bernoulli's equation 4 the 

pressure variation with these velocity changes will be about as shown, and the 

pressure at the stagnation point, the stagnation pressure, 𝑝𝑠 , may be calculated from: 
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𝑝𝑠 + 𝜌
𝑢𝑠
2 

2
= 𝑝𝑜 + 𝜌

𝑢𝑜
2 

2
 

𝑝𝑜 and 𝑢𝑜
  being respectively the pressure and velocity in the undisturbed fluid ahead 

of the solid body. In this equation 𝑢𝑠
  = 0; Therefore: 

𝑝𝑠 = 𝑝𝑜 + 𝜌
𝑢𝑜
2 

2
 

Illustrative problem 

A submarine moves through salt water at a depth of 50 m and at a speed of 22 m/s. 

Calculate the pressure on the nose of the submarine. 

𝑝𝑠 = 𝑝𝑜 + 𝜌
𝑢𝑜
2 

2
 

𝑝𝑠 = 50 × 9810 +
1

2
× 1000 × (22)2 

 

𝑝𝑠 = 501500 𝑁 𝑚2⁄  

 

 

Bernoulli's Equation For Real Fluid 

The Bernoulli's equation was derived on the assumption that fluid is inviscid (non-

viscous) and therefore frictionless. But all the real fluids are viscous and hence offer 

resistance to flow. Thus there are always some losses in fluid flows and hence in the 

application of Bernoulli's equation, these losses have to be taken into consideration. 

Thus the Bernoulli's equation for real fluids between points 1 and 2 is given as: 

𝑝1
𝑤
 + 
𝑢1
2 

 

2𝑔
+ 𝑧1  =

𝑝2
𝑤
 + 
𝑢2
2

2𝑔
+ 𝑧2 + ℎ𝐿 

Where ℎ𝐿 is loss of energy between points 1 and 2. 

 

Mechanical energy and efficiency 

In fluid systems, we are usually interested in increasing 

the pressure, velocity, and/or elevation of a fluid. This is 

done by supplying mechanical energy to the fluid by a 

pump, a fan, or a compressor (we will refer to all of 

them as pumps). Or we are interested in the reverse 

process of extracting mechanical energy from a fluid by 

a turbine and producing mechanical power in the form 

of a rotating shaft that can drive a generator or any other 

rotary device. The degree of perfection of the conversion 

process between the mechanical work supplied or 

extracted and the mechanical energy of the fluid is 

expressed by the pump efficiency and turbine efficiency, 

defined as 

𝜂𝑝𝑢𝑚𝑝 =
𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡

=
∆𝐸𝑚𝑒𝑐ℎ,𝑓𝑙𝑢𝑖𝑑̇

𝑊𝑠ℎ𝑎𝑓𝑡,𝑖𝑛̇
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Where ∆𝐸𝑚𝑒𝑐ℎ,𝑓𝑙𝑢𝑖𝑑̇ = �̇�𝑚𝑒𝑐ℎ,𝑜𝑢𝑡 − �̇�𝑚𝑒𝑐ℎ,𝑖𝑛  is the rate of increase in the mechanical 

energy of the fluid, which is equivalent to the useful pumping power 𝑊 𝑝𝑢𝑚𝑝,𝑢 

supplied to the fluid, and. 

𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒 =
𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑
=
𝑊𝑠ℎ𝑎𝑓𝑡,𝑜𝑢𝑡

∆𝐸𝑚𝑒𝑐ℎ,𝑓𝑙𝑢𝑖𝑑̇̇
 

 

∆𝐸𝑚𝑒𝑐ℎ,𝑓𝑙𝑢𝑖𝑑̇ = �̇�𝑚𝑒𝑐ℎ,𝑖𝑛 − �̇�𝑚𝑒𝑐ℎ,𝑜𝑢𝑡  is the rate of decrease in the mechanical energy 

of the fluid, which is equivalent to the mechanical power extracted from the fluid by 

the turbine 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑒,𝑒. A pump or turbine efficiency of 100 percent indicates perfect 

conversion between the shaft work and the mechanical energy of the fluid, and this 

value can be approached (but never attained) as the frictional effects are minimized. 

 

The mechanical efficiency should not be confused with the motor efficiency and the 

generator efficiency, which are defined as: 

 

A pump is usually packaged together with its motor, and a turbine with its generator. 

Therefore, we are usually interested in the combined or overall efficiency of pump–

motor and turbine–generator combinations (see the fig). 
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INTERNAL FLOW 

 

Fluid flow is classified as external or internal, depending on whether the fluid is 

forced to flow over a surface or in a conduit. Internal and external flows exhibit very 

different characteristics 

Liquid or gas flow through pipes or ducts 

is commonly used in heating and cooling 

applications and fluid distribution 

networks. The fluid in such applications 

is usually forced to flow by a fan or 

pump through a flow section. We pay 

particular attention to friction, which is 

directly related to the pressure drop and 

head loss during flow through pipes and 

ducts. The pressure drop is then used to 

determine the pumping power 

requirement. A typical piping system 

involves pipes of different diameters connected to each other by various fittings or 

elbows to route the fluid, valves to control the flow rate, and pumps to pressurize the 

fluid.  

 

Laminar and Turbulent Flows 

 

Reynolds experiment 

The type of flow is determined from the Reynolds number i.e. 
𝜌𝑢𝑑

𝜇
 . This was 

demonstrated by Reynold in 1883. His apparatus is shown in Fig. 

The apparatus consists of: 

1. A tank containing water at constant head. 

2. A small tank containing some dye. 

3. A glass tube having a bell-mouthed entrance at one end and a regulating value 

at other ends. 
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The water from the tank was allowed to flow through the glass tube. The velocity of 

flow was varied by the regulating valve. A liquid dye having same specific weight as 

water was introduced into the glass tube as shown in Fig.  

The following observations were made by Reynold: 

 When the velocity of flow was low. The dye filament in the glass tube was in 

the form of a straight line. This straight line of dye filament was parallel to the 

glass tube, which was the case of laminar flow as shown in Fig. (a). 

 With the increase of velocity of flow, the dye-filament was no longer a 

straight-line but it became a wavy one as shown in Fig. (b). this shows that 

flow is no longer laminar. 

 With further increase of velocity of flow, the wavy dye-filament broke-up and 

finally diffused in water as shown in Fig. (c). this means that the fluid particles 

of the dye at this higher velocity are moving in random fashion, which shows 

the case of turbulent flow. Thus in case of turbulent flow the mixing of dye-

filament and water is intense and flow is irregular, random and disorderly. 

 

Laminar and turbulent flows are characterized on the basis of Reynolds number  

For Reynolds number (Re) < 2300    ... flow in pipes is laminar, 

For Reynolds number (Re) > 4000    ... flow in pipes is turbulent 

For Re between 2000 and 4000         ... flow in pipes may be laminar or turbulent.  

 

Reynolds number 

Reynolds number is a dimensionless number, defined as:  

Re = (Inertia forces/Viscous forces).  Or, 

𝑅𝑒 =
𝜌𝑢𝑑

𝜇
 

Where       

u = free stream velocity, m/s 

d = hydraulic diameter 

When the Reynolds number is low, i.e. when the flow 

is laminar, inertia forces are small compared to 

viscous forces and the velocity fluctuations are 

'damped out' by the viscosity effects and the layers of 

fluid flow systematically, parallel to each other. 

When the Reynolds number is large, i.e. when the 

flow is turbulent, inertia forces are large compared to 

the viscous forces and the flow becomes chaotic 

For flow through noncircular pipes, the Reynolds number is 

based on the hydraulic diameter 𝐷ℎ defined as (the Fig.) 

𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟: 𝐷ℎ =
4 𝐴𝑐
𝑃

 

Where 𝐴𝑐 is the cross-sectional area of the pipe and p is its 

wetted perimeter.  
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The entrance region 

Consider a fluid entering a circular pipe at a uniform velocity. Because of the no-slip 

condition, the fluid particles in the layer in contact with the wall of the pipe come to a 

complete stop. This layer also causes the fluid particles in the adjacent layers to slow 

down gradually as a result of friction. To make up for this velocity reduction, the 

velocity of the fluid at the midsection of the pipe has to increase to keep the mass 

flow rate through the pipe constant. As a result, a velocity gradient develops along the 

pipe. 

The region of the flow in which the effects of the viscous shearing forces caused by 

fluid viscosity are felt is called the velocity boundary layer or just the boundary layer. 

The hypothetical boundary surface divides the flow in a pipe into two regions: the 

boundary layer region, in which the viscous effects and the velocity changes are 

significant, and the irrotational (core) flow region, in which the frictional effects are 

negligible and the velocity remains essentially constant in the radial direction. 

The thickness of this boundary layer increases in the flow direction until the boundary 

layer reaches the pipe center and thus fills the entire pipe, as shown in Fig., and the 

velocity becomes fully developed. 

 

The region from the pipe inlet to the point at which the velocity profile is fully 

developed is called the hydrodynamic entrance region, and the length of this region is 

called the hydrodynamic entry length. 

 Flow in the entrance region is called hydrodynamically developing flow since 

this is the region where the velocity profile develops.  

 The region beyond the entrance region in which the velocity profile is fully 

developed and remains unchanged is called the hydrodynamically fully 

developed region. 

However, the pipes used in practice are usually several times the length of the 

entrance region, and thus the flow through the pipes is often assumed to be fully 

developed for the entire length of the pipe. This simplistic approach gives reasonable 

results for long pipes but sometimes poor results for short ones. 
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Laminar Flow 

 

Flow of Viscous Fluid in Circular Pipes-Hagen Poiseuille Law 

Hagen-Poiseuille theory is based on the following assumptions: 

1- The fluid follows Newton's law of viscosity. 

2- There is no slip of fluid particles at the boundary (i.e. the fluid particles 

adjacent to the pipe will have zero velocity). 

The fig. shows a horizontal circular pipe of radius R, having laminar flow of fluid 

through it. Consider a small concentric cylinder (fluid element) of radius r and length 

dx as a free body. 

If 𝜏  : is the shear stress, the shear force F is given by 

𝐹 =  𝜏 ×  2𝜋𝑟 ×  𝑑𝑥 
Let P be the intensity of pressure at left end and the intensity of pressure at the right 

end be 

(𝑃 +
𝜕𝑃

𝜕𝑥
𝑑𝑥) 

Thus the forces acting on the fluid element are: 

1- The shear force, 𝜏 ×  2𝜋𝑟 ×  𝑑𝑥 on the surface of fluid element. 

2- The pressure force, 𝑃 × 𝜋𝑟2 on the left end. 

3- The pressure force,(𝑃 +
𝜕𝑃

𝜕𝑥
𝑑𝑥) × 𝜋𝑟2on the right end. 

For steady flow, the net force on the cylinder must be zero. 

[𝑃 × 𝜋𝑟2 − (𝑃 +
𝜕𝑃

𝜕𝑥
𝑑𝑥) × 𝜋𝑟2] − 𝜏 ×  2𝜋𝑟 ×  𝑑𝑥 = 0 

−
𝜕𝑃

𝜕𝑥
𝑑𝑥 × 𝜋𝑟2 − 𝜏 ×  2𝜋𝑟 ×  𝑑𝑥 = 0 

𝜏 = −
𝜕𝑃

𝜕𝑥
×
𝑟

2
                  (1) 

 Eqn. (1) shows that flow will occur only if pressure gradient exists in the 

direction of flow. 
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 The negative sign shows that pressure decreases in the direction of flow. 

 

 

 

 

 

 Eqn. (1) indicates that the shear stress 

varies linearly across the section (see the 

next Fig.). Its value is zero at the centre of 

pipe (r = 0) and maximum at the pipe wall  

 

 

 

 

 

 



45 
 

 

In the above equation, values of  
𝜕𝑃

𝜕𝑥
 and R are constant, which means the velocity, u 

varies with the square of r. The equation is equation of parabola. This shows that the 

velocity distribution across the section of a pipe is parabolic. This velocity 

distribution is shown in the above Fig.  

 

Ratio of maximum velocity to average velocity 

The velocity is maximum, when r = 0 in the equation. Thus maximum velocity, 𝑈𝑚𝑎𝑥 

is obtained as 

𝑈𝑚𝑎𝑥 = −
1

4𝜇

𝜕𝑃

𝜕𝑥
𝑅2 

Let the average velocity, �̅� to be 

�̅� =
𝑈𝑚𝑎𝑥
2

 

So  
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�̅� = −
1

8𝜇

𝜕𝑃

𝜕𝑥
𝑅2 
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Pressure Drop and Head Loss 

A quantity of interest in the analysis of pipe flow is the pressure drop ∆P since it is 

directly related to the power requirements of the fan or pump to maintain flow. 

From (Hagen Poiseuille) equation we have 

∆𝑃 = 𝑃1 − 𝑃2 =
32𝜇𝐿�̅�

𝐷2
                   (𝑎) 

Note from Eq. (a) that the pressure drop is proportional to 

the viscosity 𝜇 of the fluid, and ∆𝑃 would be zero if there 

were no friction. Therefore, the drop of pressure from P1 to 

P2 in this case is due entirely to viscous effects. 

In practice, it is convenient to express the pressure loss for 

all types of fully developed internal flows (laminar or 

turbulent flows, circular or noncircular pipes, smooth or 

rough surfaces, horizontal or inclined pipes) as shown in 

(Fig.) 

∆𝑃𝐿 = 𝑓
𝐿

𝐷

𝜌�̅�2

2
                           (𝑏) 

 

Setting Eqs. (a) and (b) equal to each other and solving for 𝑓 gives the friction factor 

for fully developed laminar flow in a circular pipe, 



48 
 

𝑓 =
64𝜇

𝜌𝐷�̅�
=
64

𝑅𝑒
              (𝑐)  𝑓𝑜𝑟 𝑚𝑜𝑟𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑒 𝑡ℎ𝑒 𝑎𝑝𝑝𝑒𝑛𝑑𝑒𝑥 𝑜𝑓 𝑐ℎ. 4 

This equation shows that in laminar flow, the friction factor is a function of the 

Reynolds number only and is independent of the roughness of the pipe surface 

(assuming, of course, that the roughness is not extreme). 

In the analysis of piping systems, pressure losses are commonly expressed in terms of 

the equivalent fluid column height, called the head loss ℎ𝐿. Noting from fluid statics 

that ∆𝑃 =  𝜌𝑔ℎ and thus a pressure difference of ∆𝑃 corresponds to a fluid height of 

ℎ𝐿 =
∆𝑃

𝜌𝑔⁄ , the pipe head loss is obtained by: 

ℎ𝐿 =
∆𝑃𝐿
𝜌𝑔

= 𝑓
𝐿

𝐷

�̅�2

2𝑔
                  (𝑑) 

The head loss ℎ𝐿 represents the additional height that the fluid needs to be raised by a 

pump in order to overcome the frictional losses in the pipe. Equations (b) and (d) are 

valid for both laminar and turbulent flow in both circular and noncircular pipes, but 

Eq. (c) is valid only for fully developed laminar flow in circular pipes. 

Once the pressure loss (or head loss) is known, the required pumping power to 

overcome the pressure loss is determined from 

�̇�𝑝𝑢𝑚𝑝,𝐿 = 𝑄∆𝑃𝐿 = 𝑄𝜌𝑔ℎ𝐿 = �̇�𝑔ℎ𝐿 

Where Q is the volume flow rate and ṁ is the mass flow rate. 

 

 

Turbulent Flow in Pipes 

Most flows encountered in engineering practice are turbulent, and thus it is important 

to understand how turbulence affects wall shear stress. However, turbulent flow is a 

complex mechanism dominated by fluctuations, and despite tremendous amounts of 

work done in this area by researchers, turbulent flow still is not fully understood. 

Therefore, we must rely on experiments and the empirical or semi-empirical 

correlations developed for various situations. 

Turbulent flow is characterized by disorderly and rapid fluctuations of swirling 

regions of fluid, called eddy, throughout the flow. These fluctuations provide an 

additional mechanism for momentum and energy transfer.  

In laminar flow, fluid particles flow in an orderly manner along pathlines, and 

momentum and energy are transferred across streamlines by molecular diffusion.  

In turbulent flow, the swirling eddies transport mass, momentum, and energy to other 

regions of flow much more rapidly than molecular diffusion, greatly enhancing mass, 

momentum, and heat transfer 

 

Friction Factor Calculation for Turbulent Flow  

The moody chart and the Colebrook equation 

The friction factor in fully developed turbulent pipe flow depends on the Reynolds 

number and the relative roughness 𝜀/𝐷, which is the ratio of the mean height of 

roughness of the pipe to the pipe diameter. The functional form of this dependence 

cannot be obtained from a theoretical analysis, and all available results are obtained 

from experiments using artificially roughened surfaces. 

Most such experiments were conducted by Prandtl’s student J. Nikuradse in 1933, 

followed by the works of others. The friction factor was calculated from 

measurements of the flow rate and the pressure drop. 
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The experimental results are presented in tabular and graphical. A formula that gives an 

approximate answer for any surface roughness is that given by Haaland.                        

 
1

√𝐶𝑓
= −1.8 𝑙𝑜𝑔10 [

6.9

𝑅𝑒
+ (

𝜀

3.71
)
1.11

] 

 

 

We make the following observations from the Moody chart: 

 For laminar flow, the friction factor decreases with increasing Reynolds 

number, and it is independent of surface roughness. 

 The friction factor is a minimum for a smooth pipe (but still not zero because 

of the no-slip condition) and increases with roughness. 

 For smooth pipes, use the bottom curve on the diagram, (surface roughness≅ 0). 
 At very large Reynolds numbers the friction factor curves corresponding to 

specified relative roughness curves are nearly horizontal, and thus the friction 

factors are independent of the Reynolds number. The flow in that region is 

called fully rough flow 

 

Types of fluid flow problems 

In the design and analysis of piping systems that involve the use of the 

Moody chart, we usually encounter three types of problems (the fluid and the 

roughness of the pipe are assumed to be specified in all cases) (Fig): 
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1. Determining the pressure drop (or head 

loss) when the pipe length and diameter are 

given for a specified flow rate (or velocity) 

2. Determining the flow rate when the pipe 

length and diameter are given for a specified 

pressure drop (or head loss) 

3. Determining the pipe diameter when the 

pipe length and flow rate are given for a 

specified pressure drop (or head loss) 

 

 

 

Minor Losses 

The fluid in a typical piping system passes through various fittings, valves, bends, 

elbows, tees, inlets, exits, expansions, and contractions in addition to the straight 

sections of piping. These components interrupt the smooth flow of the fluid and cause 

additional losses because of the flow separation and mixing they induce.  

-  In a system with long pipes, these losses are minor compared to the head loss in the 

straight sections (the major losses) and are called minor losses.  

-  But, in some cases the minor losses may be greater than the major losses. This is the 

case, for example, in systems with several turns and valves in a short distance.  

 

The head loss introduced by a Flow through valves and fittings is very complex, and a 

theoretical analysis is generally not posable. Therefore, minor losses are determined 

experimentally, usually by the manufacturers of the components. 

Minor losses are usually expressed in terms of the loss coefficient 𝐾𝐿 (also called the 

resistance coefficient), defined as following: 

 
1. Exit from a pipe into a tank.  

The liquid emerges from the pipe and collides with 
stationary liquid causing it to swirl about before finally 
coming to rest. All the kinetic energy is dissipated by 
friction. It follows that all the kinetic head is lost so k = 1.0 
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2. Entry to a pipe from a tank  
The value of k varies from 0.78 to 0.04 depending on the shape 
of the inlet. A good rounded inlet has a low value but the case 
shown is the worst. 
 

 

 

3. Sudden enlargement  
This is similar to a pipe discharging into a tank but this time it 
does not collide with static fluid but with slower moving fluid in 
the large pipe. The resulting loss coefficient is given by the 
following expression. 

𝑘 = {1 − (
𝑑1
𝑑2
)
2

}

2

 

 

 

4. Sudden contraction  
This is similar to the entry to a pipe from a tank. The best case 
gives k = 0 and the worst case is for a sharp corner which gives k 
= 0.5. 
 

 

 

5. Bends and fittings 
The k value for bends depends upon the radius of the bend and the diameter of the 
pipe. The k value for bends and the other cases is on various data sheets. For 
fittings, the manufacturer usually gives the k value. Often instead of a k value, the 
loss is expressed as an equivalent length of straight pipe that. 
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From the above points for the values of loss coefficient 𝐾𝐿 Minor losses are calculated 

as following: 

ℎ𝐿 = 𝐾𝐿
𝑢2

2𝑔
 

Where ℎ𝐿 the additional head loss is in the piping system caused by insertion of the 

component, and is defined as ℎ𝐿 =
∆𝑃𝐿

𝜌𝑔
. For example, imagine replacing the valve in 

the 

next 

Fig.  

 

 

 

 

 

Total Friction Losses 

The frictional losses from the 

friction in the straight pipe 

(skin friction), enlargement 

losses, contraction losses, and 

losses in fittings and valves are 

all incorporated in hL term in 

Bernoulli's equation, so that. 

 

ℎ𝐿 = 𝑓
𝑙

𝑑

𝑢1
2

2𝑔
+ 𝐾𝑒

𝑢1
2

2𝑔
+ 𝐾𝑐

𝑢2
2

2𝑔
+ 𝐾𝑓

𝑢 
2

2𝑔
 

ℎ𝐿 = 𝑓
𝑙

𝑑

(
𝑄
𝐴1
)
2 

2𝑔
+ 𝐾𝑒

(
𝑄
𝐴1
)
2

2𝑔
+ 𝐾𝑐

(
𝑄
𝐴2
)
2

2𝑔
+ 𝐾𝑓

(
𝑄
𝐴 
)
2

2𝑔
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ℎ𝐿 = (
8𝑓𝐿

𝜋2𝑔𝑑 1
5 +

8𝐾𝑒

𝜋2𝑔𝑑 1
4 +

8𝐾𝑐

𝜋2𝑔𝑑 2
4 +

8𝐾𝑓

𝜋2𝑔𝑑  
4) × 𝑄

2 

If all the velocity u, u1, and u2 are the same, then this equation becomes, for this 

special case; 

ℎ𝐿 = [𝑓
𝑙

𝑑
+ 𝐾𝑒 + 𝐾𝑐 + 𝐾𝑓]

𝑢 
2

2𝑔
 

 

 

EXTERNAL FLOW 

Parallel flow over flat plate 

Velocity boundary layer 

Let us first study the development of boundary layer for a flow over a flat plate. Flow 

over a flat plate is important from a practical point of view, since flow over turbine 

blades and aerofoil sections of air plane wings can be approximated as flow over a flat 

plate. See Fig. 

Consider a thin, flat plate. The leading edge and the trailing edge of the plate are 

shown in the Fig. Let a fluid approach the flat plate at a free stream velocity of U. The 

fluid layer immediately in contact with the plate surface adheres to the surface and 

remains stationary, and in fluid mechanics, this phenomenon is known as 'no slip 

condition. Then, the fluid layer next to this stationary layer has its velocity retarded 

because of the viscosity effects i.e. due to the frictional force or 'drag' exerted between 

the stationary and the moving layers. This effect continues with subsequent layers up 

to some distance in the y-direction till the velocity equals the free stream velocity U. 

This region of fluid layer in which the viscosity effects are predominant is known as 

the 'velocity (or hydrodynamic) boundary layer', or simply the 'boundary layer'.  

 

Note the following points in connection with the boundary layer: 

1. The boundary layer divides the flow field into two regions: one, 'the boundary 

layer region' where the viscosity effects are predominant and the velocity 

gradients are very steep, and, second, inviscid region' where the frictional 
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effects are negligible and the velocity remains essentially constant at the free 

stream value. 

2. Since the fluid layers in the boundary layer travel at different velocities, the 

faster layer exerts a drag force ( or frictional force) on the slower layer below 

it; the drag force per unit area is known as shear stress (𝜏)'. Shear stress is 

proportional to the velocity gradient at the surface. This is the reason why in 

fluid mechanics, the velocity profile has to be found out to determine the 

frictional force exerted by a fluid on the surface. Shear stress is given by: 

𝜏𝑠 = 𝜇. (
𝑑𝑈

𝑑𝑦
)
𝑦=0

        𝑁 𝑚2⁄  

Where 𝜇 is 'dynamic viscosity' of the fluid; its unit is kg/(ms). Viscosity is a 

measure of resistance to flow. 

3. Use of the above Eq. to determine the surface shear stress is not very 

convenient, since it requires a mathematical expression for the velocity 

profile; so, in practice, surface shear stress is determined in terms of the free 

stream velocity from the following relation: 

𝜏𝑠 = 𝐶𝑓𝑎
𝜌𝑈2

2
        𝑁 𝑚2⁄  

where 𝐶𝑓 is a 'friction coefficient' or 'drag coefficient', 𝜌 is the density of the 

fluid. 𝐶𝑓𝑎 is determined experimentally in most cases. Then the drag force 

over the entire plate surface is determined from: 

𝐹𝐷 = 𝐶𝑓𝑎. 𝐴.
𝜌𝑈2

2
        𝑁 

where A = surface area, m
2
. 

4. Starting from the leading edge of the plate, for some distance along the length 

of the plate, the flow in the boundary layer is 'laminar' i.e. the layers of fluid 

are parallel to each other and the flow proceeds in a systematic, orderly 

manner. However, after some distance, disturbances appear in the flow and 

beyond this 'transition region', flow becomes completely chaotic and there is 

complete mixing of 'chunks' of fluid moving in a random manner i.e. the flow 

becomes 'turbulent'. 

5. Transition from laminar to turbulent flow depends primarily on the free stream 

velocity, fluid properties, surface temperature and surface roughness, and is 

characterized by 'Reynolds number'. Reynolds number is a dimensionless 

number, defined as:  

𝑅𝑒 =
𝑈. 𝑥

𝑣
 

Where       

U = free stream velocity, m/s 

x = characteristic length i.e. for a flat plate it is the length along the plate in the 

flow direction, from the leading edge, and 

v = kinematic viscosity of fluid = 𝜇 𝜌⁄  , m
2
/s, where 𝜌 is the density of fluid. 

For a flat plate, in general, for practical purposes, the 'critical Reynolds 

number, at which the flow changes from laminar to turbulent is taken as 

(5 ∗ 105). It should be understood clearly that this is not a fixed value but 

depends on many parameters including the surface roughness. 

6. Turbulent region of boundary layer is preceded by transition region as shown 

in Fig. 
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7. Turbulent boundary layer itself is made of three layers: a very thin layer called 

laminar sub-layer', then, a "buffer layer' and, finally, the 'turbulent layer', 

8. Thickness of the boundary layer, 𝛿, increases along the flow direction; 𝛿 is 

related to the Reynolds number as follows: in the laminar flow region: 

𝛿𝑙𝑎𝑚 =
5. 𝑥

(𝑅𝑒𝑥)0.5
 

𝐶𝑓𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1.33

(𝑅𝑒𝐿)0.5
 

and for turbulent flow region: 

𝛿𝑡𝑢𝑟𝑏 =
0.376. 𝑥

(𝑅𝑒𝑥)0.2
 

𝐶𝑓𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
0.074

(𝑅𝑒𝐿)0.5
 

where 𝑅𝑒𝑥 is the Reynolds number at position x from the leading edge. 

DISCHARGE FROM A TANK THROUGH AN ORIFICE 

Co-efficient of Discharge (𝑪𝒅) 
 It is defined as the ratio of the actual discharge from an orifice to the theoretical 

discharge from the orifice. It is denoted by 𝐶𝑑. If Q is actual discharge and Qth is the 

theoretical discharge then mathematically  𝐶𝑑, is given as 

𝐶𝑑 =
𝑄

𝑄𝑡ℎ
=

𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑥 𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑟𝑒𝑎

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑥 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑎𝑟𝑒𝑎
 

The value of 𝐶𝑑, varies from 0.61 to 0.65. For general purpose the value of 𝐶𝑑 is 

taken as 0.62. 

Experimental determination of co-efficient of discharge (𝑪𝒅). 
The water is allowed to flow through an orifice fitted to a tank under a constant head. 

H as shown in Fig. The water is collected in a measuring tank for a known time, 𝑡. 
The height Of water in the measuring tank is noted down. Then actual discharge 

through orifice: 

𝑄 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑖𝑛𝑔 𝑡𝑎𝑛𝑘 × 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑖𝑛𝑔 𝑡𝑎𝑛𝑘

𝑇𝑖𝑚𝑒(𝑡)
 

And  

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =  𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑟𝑖𝑓𝑖𝑐𝑒 ×  √2𝑔𝐻 
 

𝐶𝑑 =
𝑄

𝑎 × √2𝑔𝐻
 

 

 

 

 

 

 

 

 

 

 

Time Of Emptying A Tank Through An Orifice At Its Bottom 
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Consider a tank containing some liquid up to a height of 𝐻1 Let an orifice is fitted at 

the bottom of the tank. It is required to find the time for the liquid surface to fall from 

the height 𝐻1 to a height 𝐻2. 
Let   A = Area of the tank 

a = Area of the orifice 

𝐻1 = Initial height of the liquid 

𝐻2 = Final height of the liquid 

T= Time in seconds for the liquid to fall from 𝐻1 to 𝐻2 
Let at any lime, the height of liquid from orifice is h and 

let the liquid surface fall by a small height dh in time dT. 

Then 

Volume of liquid leaving the tank in time,  =  𝐴 ×  𝑑ℎ 

Also the theoretical velocity through orifice, 𝑢 = √2𝑔ℎ 

 

 
 
 

 

 

 



57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VORTEX FLOW 

Vortex flow is defined as the flow of a fluid along a curved path or the flow of a 

rotating mass of fluid is known a 'Vortex Flow". The vortex flow is of two types 

namely : 

1. Forced vortex flow. 

2. Free vortex flow. 

 Forced Vortex Flow. Forced vortex flow is defined as that type of vortex 

flow, in which some external torque is required to rotate the fluid mass. The 

fluid mass in this type of flow, rotates at constant angular velocity, 𝑤. The 

tangential velocity of any fluid particle is given by  

𝑣 = 𝑤 × 𝑟         (1) 
 

 

Hence angular velocity 𝑤 is given by 

𝑤 =
𝑣

𝑟
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Examples of forced vortex are: 

1. A vertical cylinder containing liquid which is rotated about its central axis 

with a constant angular velocity to. As shown in the Fig. 
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2. Flow of liquid inside the impeller of a centrifugal pump. 

 

 Free Vortex Flow. When no external torque is required to rotate the fluid 

mass, that 

type of flow is called free vortex flow.  

Example for the free vortex flow is the flow of liquid through a hole provided at the 

bottom of a container. 

 

Equation of Motion for Vortex Flow 

Consider a fluid element ABCD (shown shaded in the Fig). rotating at a uniform 

velocity in a horizontal plane about an axis perpendicular to the plane of paper and 

passing through 0. 

Let 

 r= Radius of the element from 0. 

 ∆𝜃 = Angle subtended by the element at 0. 

 𝑑𝑟 = Radial thickness of the element. 

 𝑑A = Area of cross-section of element. 

 

The forces acting on the element are: 

1. Pressure force, 𝑃 𝑑𝐴, on the face AB. 

2. Pressure force, (𝑃 𝑑𝐴 +
𝜕

𝜕𝑟
𝑃 𝑑𝐴 𝑑𝑟) on 

the face CD. 

3. Centrifugal force, 
𝑚 𝑣2

𝑟
 acting in the 

direction away from the centre, 0. 

Now, the mass of the element = density x Volume 

𝜌 𝑑𝐴 𝑑𝑟 

So the centrifugal force = 𝜌 𝑑𝐴 𝑑𝑟
  𝑣2

𝑟
 

Equating the forces in the radial direction, we get 

𝑃 𝑑𝐴 − (𝑃 𝑑𝐴 +
𝜕

𝜕𝑟
𝑃 𝑑𝐴 𝑑𝑟) + 𝜌 𝑑𝐴 𝑑𝑟

  𝑣2

𝑟
= 0 

𝜕

𝜕𝑟
𝑃 𝑑𝐴 𝑑𝑟 = 𝜌 𝑑𝐴 𝑑𝑟

  𝑣2

𝑟
 

𝜕𝑃

𝜕𝑟
= 𝜌

  𝑣2

𝑟
             (𝑎) 

The expression   
𝑑𝑃

𝜕𝑟
  is called pressure gradient in the radial direction. As 

𝑑𝑃

𝜕𝑟
 is 

positive, hence pressure increases with the increase of radius r. 

 

But the pressure varies with the vertical plane which given by the hydrostatic law: 
𝜕𝑝

𝜕𝑧
= −𝜌𝑔           (𝑏) 

The pressure, p varies with respect to r and z or p is a function of r and z and hence 

total derivative of p is 

𝑑𝑃 =
𝜕𝑃

𝜕𝑟
𝑑𝑟 +

𝜕𝑝

𝜕𝑧
𝑑𝑧 

Substituting the values of 
𝜕𝑃

𝜕𝑟
 from equation (a) and 

𝜕𝑝

𝜕𝑧
 from equation (b), we get 

𝑑𝑃 = 𝜌
  𝑣2

𝑟
𝑑𝑟 − 𝜌𝑔𝑑𝑧                 (2) 
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Eq. (2) gives the variation of pressure of a rotating fluid in any plane 

 

Equation for forced vortex flow 

For the forced vortex flow, from equation (1).we have 

𝑣 =  𝑤 × 𝑟 
Where 𝑤 = Angular velocity = Constant. 

Substituting the value of 𝑣 in equation (2), we get 

𝑑𝑃 = 𝜌
  𝑤2𝑟2

𝑟
𝑑𝑟 − 𝜌𝑔𝑑𝑧 

Consider two points 1 and 2 in the fluid having forced vortex flow as shown 

in the Fig. 

Integrating the above equation for points 1 and 2, we get 

 

∫ 𝑑𝑃
2

1

= ∫ 𝜌𝑤2𝑟  𝑑𝑟
2

1

−∫ 𝜌𝑔𝑑𝑧
2

1

 

𝑃2 − 𝑃1 =
𝜌𝑤2

2
[𝑟2
2 − 𝑟1

2] − 𝜌𝑔[𝑧2 − 𝑧1] 

𝑃2 − 𝑃1 =
𝜌

2
[𝑤2𝑟2

2 − 𝑤2𝑟1
2] − 𝜌𝑔[𝑧2 − 𝑧1] 

𝑃2 − 𝑃1 =
𝜌

2
[𝑣2
2 − 𝑣1

2] − 𝜌𝑔[𝑧2 − 𝑧1]         𝑎𝑠  | 𝑣2
 = 𝑤𝑟2

  𝑎𝑛𝑑 𝑣1
 = 𝑤𝑟1

 | 

If the points 1 and 2 lie on the free surface of the liquid, then 𝑃2 = 𝑃1 and hence 

above equation becomes: 

0 =
𝜌

2
[𝑣2
2 − 𝑣1

2] − 𝜌𝑔[𝑧2 − 𝑧1] 

𝜌𝑔[𝑧2 − 𝑧1] =
𝜌

2
[𝑣2
2 − 𝑣1

2] 

[𝑧2 − 𝑧1] =
1

2𝑔
[𝑣2
2 − 𝑣1

2] 

Let point 1 lies on the axis of rotation, then 𝑣1
 = 𝑤𝑟1

 = 𝑤 × 0 = 0. The above 

equation becomes as: 

[𝑧2 − 𝑧1] =
𝑣2
2

2𝑔
 

Let 𝑧2 − 𝑧1 = 𝑍 

So the Eq. becomes: 

𝑍 =
𝑣2
2

2𝑔
=
𝑤2𝑟2

2

2𝑔
             (3) 

Thus Z varies with the square of r. Hence equation (3) is an equation of parabola. This 

means the free surface of the liquid is a parabolic. 
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Closed Cylindrical Vessels 
If a cylindrical vessel is closed at the top, which contains some liquid, the shape of 

parabolic formed due to rotation of the vessel will be as shown in the Fig. for different 

speed of rotations. 

The Fig.(a) shows the initial stage of the cylinder, when it is not rotated. Fig. (b) 

shows the 

shape of the parabolic formed when the speed of rotation is 𝑤. If the speed is 

increased further say 𝑤2, the shape of paraboloid formed will be as shown in Fig. (c). 

In this case the radius of the parabola at the top of the vessel is unknown. Also the 

height of the parabolic formed corresponding to angular speed 𝑤2 is unknown. Thus 

to solve the two unknown, we should have two equations. One equation is 

𝑍 =
𝑤2𝑟2

2

2𝑔
 

The second equation is obtained from the fact that for closed vessel, volume of air 

before rotation is equal to the volume of air after rotation. 

Volume of air before rotation = Volume of closed vessel - Volume of liquid in vessel 

Volume of air after rotation = Volume of parabolic formed =
𝜋𝑟2

2
𝑍 
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Equation for free vortex flow 

In this case of flow Bernoulli’s equation is applicable.  
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APPENDIX 
Friction Coefficient for Laminar Flow  
The friction coefficient is a convenient idea that can be used to calculate the pressure drop in a pipe. It 

is defined as follows.  

𝐶𝑓 =
Wall Shear Stress 

Dynamic Pressure 
 

 Dynamic pressure  

Consider a fluid flowing with mean velocity um. If the kinetic energy of the fluid is converted 

into flow or fluid energy, the pressure would increase. The pressure rise due to this conversion 

is called the dynamic pressure. 

𝑝 =  ½ 𝜌 �̅�2 
 Wall shear stress 𝜏 

The wall shear stress is the shear stress in the layer of fluid next to the wall of the pipe. 

The shear stress in the layer next to the wall is wall 𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 

The shear force resisting flow is 𝐹𝑠 = 𝜏πLD 

The resulting pressure drop produces a force of 

𝐹𝑝 = [−𝑃 + (𝑃 + ∆𝑃)] ×
  𝜋𝐷2

4
 

𝐹𝑝 =
𝛥𝑝 𝜋𝐷2

4
 

Equating forces(𝐹𝑠, 𝐹𝑝) gives  

𝜏πLD =
𝛥𝑝 𝜋𝐷2

4
 

𝜏 =
𝛥𝑝 𝐷

4𝐿
 

𝐶𝑓 =
Wall Shear Stress 

Dynamic Pressure 
=
𝐷𝛥𝑝

4𝐿
𝜌�̅�2

2

 

4 𝐶𝑓 =
𝐷𝛥𝑝

𝐿
𝜌�̅�2

2

 

Where 𝐶𝑓 is the Fanning friction coefficient, named after the American engineer John Fanning (1837–

1911), which is defined as 𝐶𝑓 = 𝑓 4⁄  

Where 𝑓  is called the Darcy–friction factor, named after the Frenchman Henry Darcy (1803–1858) 

So 

𝑓 =
𝐷𝛥𝑝

𝐿
𝜌�̅�2

2

 

𝛥𝑝 = 𝑓
𝐿

𝐷

𝜌�̅�2

2
 

From Poiseuille's equation ∆𝑃 =
32𝜇𝐿𝑢 

𝐷2
 

𝑓
𝐿

𝐷

𝜌�̅�2

2
=
32𝜇𝐿�̅� 

𝐷2
 

𝑓 =
64𝜇

𝜌�̅�2𝐷
=
64

𝑅𝑒
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CHAPTER 5 

FLOW RATE AND VELOCITY MEASUREMENT 
 

A major application area of fluid mechanics is the determination of the flow rate of 

fluids, and numerous devices have been developed over the years for the purpose of 

flow metering. Flowmeters range widely in their level of size, cost, accuracy, 

versatility, capacity, pressure drop, and the operating principle. We give an overview 

of the meters commonly used to measure the flow rate of liquids and gases flowing 

through pipes or ducts. We limit our consideration to incompressible flow. 

 

 Some flowmeters measure the flow rate directly by discharging and recharging 

a measuring chamber of known volume continuously and keeping track of the 

number of discharges per unit time. But most flowmeters measure the flow 

rate indirectly they measure the average velocity u or a quantity that is related 

to average velocity such as pressure, and determine the volume flow rate Q 

from, 𝑄 = 𝑢 × 𝐴𝑐 Where Ac is the cross-sectional area of flow 

Therefore, measuring the flow rate is usually done by measuring flow velocity, 

and many flowmeters are simply velocimeters used for the purpose of 

metering flow. 

 

 The velocity in a pipe varies from zero at the wall to a maximum at the center, 

and it is important to keep this in mind when taking velocity measurements. 

For laminar flow, for example, the average velocity is half the centerline 

velocity. But this is not the case in turbulent flow, and it may be necessary to 

take the average or an integral of several local velocity measurements to 

determine the average velocity. 

 

The flow rate of water through a garden hose, for example, 

can be measured simply by collecting the water in a bucket 

of known volume and dividing the amount collected by the 

collection time (Fig).  

A crude way of estimating the flow velocity of a river is to 

drop a float on the river and measure the drift time between 

two specified locations. 

In this chapter we discuss devices that are commonly used 

to measure velocity and flow rate. 

 

 

 

 

 

 

Pitot-tube 

It is a device used for measuring the velocity at any point in a pipe or a channel. It is 

based on the principle that if the velocity of flow at a point becomes zero, the pressure 

there is increased due to the conversion of the kinetic energy into pressure energy. 

The pitot-tube consists of both a stagnation pressure tap and several circumferential 

static pressure taps and it measures both stagnation and static pressures (Fig)  
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Let:  

𝑝1 = intensity of pressure at point (1) 

𝑢1
  = velocity of flow at (1) which is zero 

𝑝2 = pressure at point (2) 

𝑢2
  = velocity at point (2) 

Applying Bernoulli's equation at points (1) and 

(2), we get 

𝑝1
𝜌𝑔
 + 
𝑢1
2 

 

2𝑔
+ 𝑧1   =

𝑝2
𝜌𝑔
 + 
𝑢2
2

2𝑔
+ 𝑧2  

But 𝑧1= 𝑧2 as points (1) and (2) are on the same 

line and 𝑢1
  = 0. 

𝑝1

𝜌𝑔
 = pressure head at (1) = ℎ1 

𝑝2

𝜌𝑔
= pressure head at (2) = ℎ2 

Substituting these values, we get 

ℎ1 = ℎ2 + 
𝑢2
2

2𝑔
 

𝑢2
 = √2𝑔∆ℎ 

This is theoretical velocity. Actual velocity is 

given by 

(𝑢2
 )𝑎𝑐𝑡 = 𝐶𝑑√2𝑔∆ℎ 

Where 𝐶𝑑 is coefficient of pitot-tube 

 

 It is used to measure velocity in both 

liquids and gases. 

 

Obstruction Flowmeters: Orifice, Venturi, and Nozzle Meters 

Consider incompressible steady flow of a fluid in a horizontal pipe of diameter D that 

is constricted to a flow area of diameter d, as shown in Fig. 

The mass balance and the Bernoulli equations between a location before the 

constriction (point 1) and the location where constriction occurs (point 2) are written 

as 

Mass balance:𝑄 = 𝐴1𝑢1 = 𝐴2𝑢2 → 

𝑢1 = (𝐴2/𝐴1)𝑢1 = (𝑑/𝐷)
2 𝑢2  

Bernoulli equation (𝑧1 = 𝑧2): 
𝑝1

𝜌𝑔
 +  

𝑢1
2 

 

2𝑔
=
𝑝2

𝜌𝑔
 +  

𝑢2
2

2𝑔
 

Combining the above Eqs. and solving for velocity 𝑢2 

gives 

𝑢2
2 = (

𝑝1 − 𝑝2
𝜌𝑔

+
𝑢1
2 

 

2𝑔
) × 2𝑔  

𝑢2
2 = (

2(𝑝1 − 𝑝2)

𝜌
+ ((𝑑/𝐷)2 𝑢2) 

2 

 
) 

𝑢2
2 = (

2(𝑝1 − 𝑝2)

𝜌
+ (𝛽4 𝑢2) 

2) 

Obstruction (with no loss): 

𝑢2 = √
2(𝑃1 − 𝑃2)

𝜌(1 − 𝛽4)
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Where 𝛽 = d/D is the diameter ratio. Once 𝑢2 is known, the flow rate can be 

determined from 𝑢2 

𝑄 = 𝐴2𝑢2 = (𝜋𝑑
2/4)𝑢2. 

Noting that the pressure drop between two points along the flow is measured easily by 

a differential pressure manometer, it appears that a simple flow rate measurement 

device can be built by obstructing the flow. Flowmeters based on this principle are 

called obstruction flowmeters and are widely used to measure flow rates of gases 

and liquids. 

 

 The velocity in Eq. above is obtained by assuming no loss, and thus it is the 

maximum velocity that can occur at the constriction site. In reality, some 

pressure losses due to frictional effects are inevitable, and thus the actual 

velocity is less. Also, the fluid stream continues to contract past the 

obstruction, and the vena contracta area (see the fig below) is less than the 

flow area of the obstruction. Both losses can be accounted for by incorporating 

a correction factor called the discharge coefficient Cd whose value (which is 

less than 1) is determined experimentally. Then the flow rate for obstruction 

flowmeters is expressed as 

Obstruction flowmeters: 𝑄 = 𝐴2 × 𝐶𝑑 × √
2(𝑃1−𝑃2)

𝜌(1−𝛽4)
 

 

Where 𝐴2 the cross-sectional area of the throat or orifice 

The value of Cd depends on both 𝛽 and the Reynolds number. Charts and 

correlations for Cd are available for various types of obstruction meters. 

 Numerous types of obstruction meters are available; those most widely used 

are orifice meters, flow nozzles, and Venturi meters (Fig, next page). 

The Reynolds number depends on the flow velocity. Therefore, the solution is 

iterative in nature therefore the value of Cd can be taken to be 0.96 for flow 

nozzles and 0.61 for orifices. 

Owing to its streamlined design, the discharge coefficients of Venturi meters 

are very high, ranging between 0.95 and 0.99 in the absence of specific data, 

we can take Cd = 0.98 for Venturi meters. 
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a. The orifice meter has the simplest design and it occupies minimal space as it 

consists of a plate with a hole in the middle, but the sudden change in the flow 

area in orifice meters causes considerable swirl and thus significant head loss 

or permanent pressure loss.  

b. In nozzle meters, the plate is replaced by a nozzle, and thus the flow in the 

nozzle is streamlined. As a result, the vena contracta is practically eliminated 

and the head loss is smaller. However, flow nozzle meters are more expensive 

than orifice meters. 

c. The Venturi meter, is the most accurate flowmeter in this group, but it is also 

the most expensive. Its gradual contraction and expansion prevent flow 

separation and swirling, and it suffers only frictional losses on the inner wall 

surfaces. Venturi meters cause very low head losses, and thus, they should be 

preferred for applications that cannot allow large pressure drops. 

 

Venturimeter  
A Venturimeter is a device used for measuring the rate of a flow of a fluid flowing 

through a pipe. It consists of three parts: 

(i) A short converging part, (ii) Throat, and (iii) Diverging part. It is based on the 

Principle of Bernoulli's equation. 

Consider a Venturimeter fitted in a horizontal pipe through which a fluid is flowing 

(say water), as shown in the fig. 

Let  

d1 = diameter at inlet or at section (1) 

p1 = pressure at section (1) 

u1 = velocity of fluid at section (1) 

a1= area at section (1) =
𝜋

4
𝑑1
2 

And d2, P2, u2 and a2 are corresponding values at 

section (2). Applying Bernoulli's equation at 

sections (1) and (2), we get 

𝑝1
𝑤
 + 
𝑢1
2 

 

2𝑔
+ 𝑧1  =

𝑝2
𝑤
 + 
𝑢2
2

2𝑔
+ 𝑧2 

As the pipe is horizontal, 𝑧1 = 𝑧2 

𝑝1
𝜌𝑔
 + 
𝑢1
2 

 

2𝑔
 =
𝑝2
𝜌𝑔
 + 
𝑢2
2

2𝑔
 

Or 

𝑝1 − 𝑝2
𝜌𝑔

=  
𝑢2
2

2𝑔
−
𝑢1
2 

 

2𝑔
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But  
𝑝1−𝑝2

𝜌𝑔
 is the difference of pressure heads at sections 1 and 2 and it is equal to ∆h 

or 
𝑝1 − 𝑝2
𝜌𝑔

= ∆ℎ 

Substituting this in the above equation, we get 

∆ℎ =  
𝑢2
2

2𝑔
−
𝑢1
2 

 

2𝑔
      (𝑎) 

Now applying continuity equation at sections 1 and 2 

𝑎1𝑢1 = 𝑎2𝑢2    𝑜𝑟      𝑢1 =
𝑎2𝑢2
𝑎1

 

Substituting this value of 𝑢1 in equation (a) 

∆ℎ =  
𝑢2
2

2𝑔
−

(
𝑎2𝑢2
𝑎1
)
 

2 

 

2𝑔
=
𝑢2
2

2𝑔
 [1 −

𝑎2
2

𝑎1
2] =

𝑢2
2

2𝑔
 [
𝑎1
2 − 𝑎2

2

𝑎1
2 ] 

𝑢2
2 = 2𝑔∆ℎ

𝑎1
2

𝑎1
2 − 𝑎2

2 

𝑢2
 = √2𝑔∆ℎ

𝑎1
2

𝑎1
2 − 𝑎2

2 =
𝑎1

√𝑎1
2 − 𝑎2

2
√2𝑔∆ℎ 

𝑄 = 𝑎2𝑢2 

𝑄 =
𝑎1𝑎2

√𝑎1
2 − 𝑎2

2
√2𝑔∆ℎ 

The above Equation gives the discharge under ideal conditions and is called, 

theoretical discharge. Actual discharge will be less than theoretical discharge. 

𝑄𝑎𝑐𝑡 = 𝐶𝑑 ×
𝑎1𝑎2

√𝑎1
2 − 𝑎2

2
×√2𝑔∆ℎ 

Where   𝐶𝑑 = Co-efficient of venturimeter 

 

Value of (∆ℎ) given by differential U-tube manometer 

Let the differential manometer contains a liquid which is heavier than the liquid 

flowing through the pipe. Let 

𝑆ℎ = Sp. gravity of the heavier liquid 

𝑆𝑜 = Sp. gravity of the liquid flowing through pipe 

𝑥 = Difference of the heavier liquid column in U-tube 

Then 

∆ℎ = 𝑥 (
𝑆ℎ
𝑆𝑜
− 1) 

 

Variable-Area Flowmeters (Rotameters) 

A simple, reliable, inexpensive, and easy-to-install flowmeter with reasonably low 

pressure drop and no electrical connections that gives a direct reading of flow rate for 

a wide range of liquids and gases is the variable-area flowmeter, also called a 

rotameter or floatmeter. A variable-area flowmeter consists of a vertical tapered 

conical transparent tube made of glass or plastic with a float inside that is free to 

move, as shown in Fig.  

We know from experience that high winds knock down trees, break power lines, and 

blow away hats or umbrellas. This is because the drag force increases with flow 

velocity. The weight and the buoyancy force acting on the float are constant, but the 
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drag force changes with flow velocity. Also, the velocity along the 

tapered tube decreases in the flow direction because of the increase 

in the cross-sectional area. There is a certain velocity that generates 

enough drag to balance the float weight and the buoyancy force, and 

the location at which this velocity occurs around the float is the 

location where the float settles. The degree of tapering of the tube can 

be made such that the vertical rise changes linearly with flow rate, and 

thus the tube can be calibrated linearly for flow rates. 

 

Design equation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paddlewheel flowmeter  

 To measure liquid flow 

 Working 

A sensor detects the passage of each of the 

paddlewheel blades and transmits a signal. 

A microprocessor then converts this 

rotational speed information to flow rate. 
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Example 1: A pilot-static tube is used to measure the velocity of water in a pipe. The 

stagnation pressure head is 6 m and static pressure head is 5 m. calculate the velocity 

of flow assuming the coefficient of tube equal to 0.98.  

 

Example 2: A Pitot tube is placed at a center of a 30 cm I.D. pipe line has one orifice 

pointing upstream and other perpendicular to it. The mean velocity in the pipe is 0.84 

of the center velocity. Find the discharge through the pipe if the fluid flow through the 

pipe is water and the pressure difference between orifices is 6 cm H2O. Take Cp = 

0.98. 

Example 3: The flow rate of methanol at 20
o
C (𝜌 = 

788.4 kg/m3 and 𝜇 = 5.857 ×  10−4 𝑘𝑔/𝑚 · 𝑠) through 

a 4-cm-diameter pipe is to be measured with a 3-cm 

diameter orifice meter equipped with a mercury 

manometer across the orifice plate, as shown in Fig. If 

the differential height of the manometer is 11 cm, 

determine the flow rate of methanol through the pipe 

and the average flow velocity. Take the discharge 

coefficient of the orifice meter Cd = 0.61. 

 
 

 

 

 

Example 4: An oil of sp. gr. 0.8 is flowing through a venturimeter having inlet 

diameter 20 cm and throat diameter 10 cm. The oil-mercury differential manometer 

shows a reading of 25 cm. Calculate the discharge of oil through the horizontal 

venturimeter. Take Cd = 0.98.  

 

Example 5: A horizontal venturimeter with inlet diameter 20 cm and throat diameter 

10 cm is used to measure the flow of oil of sp. gr. 0.8. The discharge of oil through 

venturimeter is 60 Liters/s. Find the reading of the oil-mercury differential 

manometer. Take Cd = 0.98. 
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CHAPTER SIX 

PUMPS 
 

Introduction  
Pumps are devices for supplying energy or head to a flowing liquid in order to 

overcome head losses due to friction or to raise liquid to a higher level. The energy 

required by the pump will depend on the height through which the fluid is raised, the 

pressure required at delivery point, the length and diameter of the pipe, the rate of 

flow, together with the physical properties of the fluid, particularly its viscosity and 

density.  

The pumping of liquids such as sulphuric acid or petroleum products from bulk store 

to process buildings, or the pumping of fluids to the reaction units and through heat 

exchangers, are examples for the use of pumps in the process industries.  

Fundamental parameters are used to analyze the performance of a pump: 

1- The mass flow rate of fluid through the pump, for incompressible flow, it is 

more common to use volume flow rate rather than mass flow rate. 

2- The performance of a pump is characterized by its net head H, defined as the 

change in Bernoulli head between the inlet and outlet of the pump 

𝑝𝑖𝑛
𝜌𝑔
 + 
𝑢𝑖𝑛
2  

 

2𝑔
+ 𝑧𝑖𝑛 + 𝐻𝑝𝑢𝑚𝑝 =

𝑝𝑜𝑢𝑡
𝜌𝑔
 + 
𝑢𝑜𝑢𝑡
2

2𝑔
+ 𝑧𝑜𝑢𝑡 

𝐻𝑝𝑢𝑚𝑝 = (
𝑝 
𝜌𝑔
 + 
𝑢 
2

2𝑔
+ 𝑧 )

𝑜𝑢𝑡

− (
𝑝 
𝜌𝑔
 + 
𝑢 
2

2𝑔
+ 𝑧 )

𝑖𝑛

                1 

The dimension of net head is length, and it is often listed as an equivalent column 

height of water, even for a pump that is not pumping water. 

By dimensional reasoning, we must multiply the net head of Eq. 1 by mass flow rate 

and gravitational acceleration to obtain dimensions of power (W). Thus, 

�̇�𝑝𝑢𝑚𝑝 = �̇�𝑔𝐻 = 𝑄𝜌𝑔𝐻 

We define pump efficiency hpump as the ratio of useful power to supplied power;  

𝜂𝑝𝑢𝑚𝑝 =
𝑀𝑒𝑐ℎ. 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑(�̇�𝑝𝑢𝑚𝑝)

̇

𝑊𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 ̇
=

𝜌𝑔𝐻𝑄

𝑊𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 ̇
             2 
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Pump Performance Curves and Matching a Pump to a Piping System 

The maximum volume flow rate through a pump occurs when it's net head is zero, H 

= 0; this flow rate is called the pump’s free delivery. The free delivery condition is 

achieved when there is no flow restriction at the pump inlet or outlet, in other words 

when there is no load on the pump. At this operating point, Q is large, but H is zero; 

the pump’s efficiency is zero because the pump is doing no useful work, as is clear 

from Eq. 2. At the other extreme, the shutoff head is the net head that occurs when 

the volume flow rate is zero, Q = 0, and is achieved when the outlet port of the pump 

is blocked off. Under these conditions, H is large 

but Q is zero; the pump’s efficiency (Eq. 2) is 

again zero, because the pump is doing no useful 

work. Between these two extremes, from shutoff 

to free delivery, the pump’s net head is occurring. 

The pump’s efficiency reaches its maximum 

value somewhere between the shutoff condition 

and the free delivery condition; this operating 

point of maximum efficiency is appropriately 

called the best efficiency point (BEP), and is 

notated by an asterisk (H*, Q*). Curves of H and 

𝜂𝑝𝑢𝑚𝑝, as functions of Q are called pump 

performance curves. 

It is important to realize that for steady conditions, a pump can operate only along its 

performance curve. Thus, the operating point of a piping system is determined by 

matching system requirements (required net head) to pump performance (available net 

head). In a typical application, Hrequired and Havailable match at one unique value of flow 

rate, this is the operating point or duty point of the 

system. 

The volume flow rate of a piping system is 

established where Hrequired = Havailable. 

 

For a given piping system with its major and 

minor losses, elevation changes, etc., the required 

net head increases with volume flow rate.  

On the other hand, the available net head of most 

pumps decreases with flow rate, as in Fig.  

 

 

Hence, the system curve and the pump performance curve intersect as sketched in the 

Fig. above, and this establishes the operating point. If we are lucky, the operating 

point is at or near the best efficiency point of the pump. 

In most cases, however, as illustrated in Fig, the pump does not run at its optimum 

efficiency. If efficiency is of major concern, the pump should be carefully selected (or 

a new pump should be designed) such that the operating point is as close to the best 

efficiency point as possible. 

For a general piping system with elevation change, major and minor losses, and fluid 

acceleration, we begin by solving the energy equation for the required net head 

𝐻𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

𝐻𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑝2 − 𝑝1
𝜌𝑔

+
𝑢2
2 − 𝑢1

2
 

2𝑔
+ (𝑧2 − 𝑧1) + ℎ𝐿,𝑡𝑜𝑡𝑎𝑙 
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*When the fluid is a gas, such as in ventilation and air pollution control problems, the 

elevation term is almost always negligible. 

 

The most common situation is that an engineer 

selects a pump that is somewhat higher than 

actually required. The volume flow rate 

through the piping system is then a bit larger 

than needed, and a valve is installed in the line 

so that the flow rate can be decreased as 

necessary. 

 

 

 

 

 

 

 

 

Example 1: A petroleum product is pumped at a rate of 2.525 x 10
-3

 m
3
/s from a 

reservoir under atmospheric pressure to 1.83 m height. If the pump 1.32 m height 

from the reservoir, the discharge line diameter is 4 cm and the pressure drop along its 

length 3.45 kPa. The gauge pressure reading at the end of the discharge line 345 kPa. 

The pressure drop along suction line is 3.45 kPa calculate:-  

(i) The required net head of the system (ii) The required power of the system (iii) The 

NPSH  

Take that: the density of this petroleum product ρ=879 kg/m
3
, the dynamic viscosity 

μ=6.47 x 10
-4

 Pa.s, and the vapor pressure Pv= 24.15 kPa.  

Solution:- 

(𝒊) 𝑇ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑒𝑡 ℎ𝑒𝑎𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

∆ℎ = ∆𝑍 +
∆𝑃

𝜌𝑔
+
∆𝑢2

2𝑔
+ ℎ𝐿 𝑡𝑜𝑡𝑎𝑙 

The total elevation= 

∆𝑍 = 1.83 𝑚 
The pressure head= 

∆𝑃

𝜌𝑔
=
345 × 103

879 × 9.81
= 40 𝑚 

The velocity head= 

𝑢1 = 0 

𝑢2 =
𝑄

𝐴
=
2.525 × 10−3

𝜋
4 (0.04)

2
= 2 

𝑚

𝑠
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So  

∆𝑢2

2𝑔
=
22 − 0

2 × 9.81
= 0.2 𝑚 

The losses head= ℎ𝐿(𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑑𝑒) + ℎ𝐿(𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑠𝑖𝑑𝑒) 

=
3.45 × 103 + 3.45 × 103

879 × 9.81
= 0.8 𝑚 

𝑇ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑒𝑡 ℎ𝑒𝑎𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 → ∆ℎ = 1.83 + 40 + 0.2 + 0.8 = 42.83 𝑚 

(𝒊𝒊) 𝑝𝑜𝑤𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = �̇� × 𝑔 × ℎ𝑟𝑒𝑞𝑢𝑖𝑒𝑑 = 𝜌 × 𝑄 × 𝑔 × ℎ𝑟𝑒𝑞𝑢𝑖𝑒𝑑 

= 879 × 2.525 × 10−3 × 9.81 × 42.83 = 932.54 𝑊 
(𝒊𝒊𝒊)𝑠𝑒𝑒 𝑝𝑎𝑔𝑒 ( 5) 

 

(𝒊) 𝑇ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑒𝑡 ℎ𝑒𝑎𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

∆ℎ = ∆𝑍 +
∆𝑃

𝜌𝑔
+
∆𝑢2

2𝑔
+ ℎ𝐿 𝑡𝑜𝑡𝑎𝑙 

ℎ𝐿 𝑡𝑜𝑡𝑎𝑙 = 𝑓
𝐿

𝑑

𝑢2

2𝑔
 

𝑢 =
𝑄

𝐴
=

𝑄
𝜋
4
0.152

= 56.6 × 𝑄  
(𝑖𝑓 𝑄 𝑖𝑛 𝑚3 ℎ⁄ )
⇒            

56.6 × 𝑄

3600
 

ℎ𝐿 𝑡𝑜𝑡𝑎𝑙 = 0.016 ×
800

0.15
×
(
56.6𝑄
3600

)
2

2 × 9.81
= 1.075 × 10−3 × 𝑄2 

∆ℎ = 8 + 1.075 × 10−3 × 𝑄2 

Example 2: A centrifugal pump used to take water from reservoir to another through 

800 m length and 0.15 m id pipe. If the difference in two tank is 8 m, calculate the 

flow rate of the water and the power required, assume f =0.016. If the available pump 

characteristic is 

Q (m
3
/h) 0 23 46 69 92 115 

Δh (m) 17 16 13.5 10.5 6.6 2.0 

η 0 0.495 0.61 0.63 0.53 0.1 

Solution:- 

So the system curve  

Q (m
3
/h) 0 20 40 60 80 

Δh (m) 8 8.43 9.72 11.87 14.88 
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Pump Cavitation and Net Positive Suction Head 

When pumping liquids, it is possible for the local pressure inside the pump to fall 

below the vapor pressure of the liquid, Pv. (Pv is also called the saturation pressure 

Psat). When P < Pv, vapor-filled bubbles called cavitation bubbles appear. In other 

words, the liquid boils locally, typically on the suction side of the rotating impeller 

blades where the pressure is lowest. After the cavitation bubbles are formed, they are 

transported through the pump to regions 

where the pressure is higher, causing rapid 

collapse of the bubbles. It is this collapse of 

the bubbles that is undesirable, since it 

causes noise, vibration, reduced efficiency, 

and most importantly, damage to the 

impeller blades. Repeated bubble collapse 

near a blade surface leads to pitting or 

erosion of the blade and cause blade failure. 

To avoid cavitation, we must ensure that the 

local pressure everywhere inside the pump 

stays above the vapor pressure. Since pressure 

is most easily measured (or estimated) at the 

inlet of the pump see the Fig, cavitation 

criteria are typically specified at the pump 

inlet. It is useful to employ a flow parameter 

called net positive suction head (NPSH), 

defined as the difference between the pump’s 

inlet stagnation pressure head and the vapor 

pressure head, 

𝑁𝑃𝑆𝐻 = (stagnation pressure)𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡 −
𝑝𝑣 
𝜌𝑔

 

 

𝑁𝑃𝑆𝐻 = (
𝑝 
𝜌𝑔
+
𝑢 
2 

 

2𝑔
)
𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡

−
𝑝𝑣 
𝜌𝑔

 

 

Pump manufacturers test their pumps for cavitation in a pump test facility, the pump 

manufacturer then publishes a performance parameter called the required net positive 

suction head (NPSHrequired), defined as the minimum NPSH necessary to avoid 

cavitation in the pump. The measured value of NPSHrequired varies with volume flow 

rate.  

In order to ensure that a pump does not cavitate, the actual or NPSH must be greater 

than NPSHrequired. It is important to note that the value of NPSH varies not only with 

flow rate, but also with liquid temperature, since Pv is a function of temperature. 

NPSH also depends on the type of liquid being pumped, since there is a unique Pv 

versus T curve for each liquid. 

 
𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟏/(𝒊𝒊𝒊):
⇒             

Applying Bernoulli equation between (suction point) and the (pump inlet point) we 

get: 

𝑝𝑠𝑢𝑐𝑡𝑖𝑜𝑛  𝑃.
𝜌𝑔

 + 
𝑢𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑃.
2  

 

2𝑔
+ 𝑧𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑃.  =

𝑝𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡

𝜌𝑔
 + 
𝑢𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡
2

2𝑔
+ 𝑧𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡 + ℎ𝐿 
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(𝑠𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡 = (
𝑝𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡

𝜌𝑔
 + 
𝑢𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡
2

2𝑔
) 

=
𝑝𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑃.
𝜌𝑔

 + 
𝑢𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑃.
2  

 

2𝑔
+ (𝑧𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑃. − 𝑧𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡) − ℎ𝐿 

𝑁𝑃𝑆𝐻 = (𝑠𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡 −
𝑝𝑣 
𝜌𝑔

 

𝑁𝑃𝑆𝐻 = (
𝑝𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑃.
𝜌𝑔

 + 
𝑢𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑃.
2  

 

2𝑔
+ (𝑧𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑃. − 𝑧𝑝𝑢𝑚𝑝 𝑖𝑛𝑙𝑒𝑡) − ℎ𝐿) −

𝑝𝑣 
𝜌𝑔

 

𝑁𝑃𝑆𝐻 = (
101325

879 × 9.81
+ 0 + (0 − 1.32) − 0.4) −

24150

879 × 9.81
= 7.32 𝑚 

 

 

Pumps in Series and Parallel 

When faced with the need to increase volume flow rate or 

pressure rise by a small amount, you might consider adding 

an additional smaller pump in series or in parallel with the 

original pump. While series or parallel arrangement is 

acceptable for some applications, arranging dissimilar 

pumps in series or in parallel may lead to problems, 

especially if one pump is much larger than the other (Fig).  

A better course of action is to increase the original pump’s 

speed and/or input power (larger electric motor), replace the 

impeller with a larger one, or replace the entire pump with a 

larger one. 

Arranging dissimilar pumps in series Fig (a) may create 

problems because the volume flow rate through each pump 

must be the same, but the overall pressure rise is equal to the 

pressure rise of one pump plus that of the other. If the pumps have widely different 

performance curves, the smaller pump may be forced to operate beyond its free 

delivery flow rate, whereupon it acts like a head loss, reducing the total volume flow 

rate.  

When operated in series, the combined net head is simply the sum of the net heads of 

each pump (at a given volume flow rate): 

𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅 𝒏𝒆𝒕 𝒉𝒆𝒂𝒅 𝒇𝒐𝒓 𝒏 𝒑𝒖𝒎𝒑𝒔 𝒊𝒏 𝒔𝒆𝒓𝒊𝒆𝒔:          𝐻𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =∑𝐻𝑖

𝑛

𝑖=1

 

Arranging dissimilar pumps in parallel Fig (b) may create problems because the 

overall pressure rise must be the same, but the net volume flow rate is the sum of that 

through each branch. If the pumps are not sized properly, the smaller pump may not 

be able to handle the large head imposed on it, and the flow in its branch could 

actually be reversed; this would inadvertently reduce the overall pressure rise. In 

either case, the power supplied to the smaller pump would be wasted. 

When two or more identical (or similar) pumps are operated in parallel, their 

individual volume flow rates (rather than net heads) are summed 

𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 𝒇𝒐𝒓 𝒏 𝒑𝒖𝒎𝒑𝒔 𝒊𝒏 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍:             𝑄𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =∑𝑄𝑖

𝑛

𝑖=1
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Types of Pumps  

Pumps can be classified into: -     

1- Positive displacement pumps. 2- Dynamic Pumps  

 

1-Positive-Displacement Pumps 

People have designed numerous positive-displacement pumps throughout the 

centuries, like:  

1- The piston Pump 

2- The Gear Pump  

3- The Cam Pump  

4- The Screw pumps 

5- Rotary pump 
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In each design, fluid is sucked into an expanding volume and then pushed along as 

that volume contracts, but the mechanism that causes this change in volume differs 

greatly among the various designs.  

These pumps are ideal for high-pressure applications like pumping viscous liquids or 

thick slurries, and for applications where precise amounts of liquid are to be dispensed 

or metered, as in medical applications. 

To illustrate the operation of a positive-displacement pump, the sketch four phases for 

half cycle of a simple rotary pump with two lobes (see the Fig. above). 

Gaps exist between the rotors and the housing and between the lobes of the rotors 

themselves, as illustrated in Fig of rotary pump.  

Fluid can leak through these gaps, reducing the pump’s efficiency. High viscosity 

fluids cannot penetrate the gaps as easily; hence the net head (and efficiency) of a 

rotary pump generally increases with fluid viscosity. This is one reason why rotary 

pumps (and other types of positive-displacement pumps) are a good choice for 

pumping highly viscous fluids and slurries. They are used, for example, as automobile 

engine oil pumps and in the foods industry to pump heavy liquids like syrup, tomato 

paste, and chocolate, and slurries like soups. 

Positive-displacement pumps have many advantages over dynamic pumps. 

For example:  

1- A positive-displacement pump is better in handling shear sensitive liquids 

since the induced shear is much less than that of a dynamic pumps operating at 

similar pressure and flow rate. Blood is a shear sensitive liquid, and this is one 

reason why positive-displacement pumps are used for artificial hearts.  

2- A well-sealed positive-displacement pump can create a significant vacuum 

pressure at its inlet, even when dry, and is thus able to lift a liquid from several 

meters below the pump. We refer to this kind of pump as a self-priming pump  

3- The rotor(s) of a positive- displacement pump run at lower speeds than the 

rotor (impeller) of a dynamic pump at similar loads, extending the useful 

lifetime of seals, etc. 

There are some disadvantages of positive-displacement pumps 
1- Their volume flow rate cannot be changed unless the rotation rate is changed. 

(Since most AC electric motors are designed to operate at one or more fixed 

rotational speeds.)  

2- They create very high pressure at the outlet side, and if the outlet becomes 

blocked, ruptures may occur or electric motors may overheat. Overpressure 

protection (e.g., a pressure-relief valve) is often required for this reason.  

3- Because of their design, positive-displacement pumps sometimes deliver a 

pulsating flow, which may be unacceptable for some applications. 

 

2-Dynamic Pumps 

There are two main types of dynamic pumps that involve rotating blades called 

impeller blades or rotor blades, which impart momentum to the fluid. They are 

classified by the manner in which flow exits the pump: centrifugal flow and axial 

flow. In a centrifugal-flow pump, fluid enters axially (in the same direction as the 

axis of the rotating shaft) in the center of the pump, but is discharged radially (or 

tangentially) along the outer radius of the pump casing. For this reason centrifugal 

pumps are also called radial-flow pumps. In an axial-flow pump, fluid enters and 

leaves axially, typically along the outer portion of the pump. Here we will focus on 

the centrifugal pumps as they most common type 
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Centrifugal Pumps 

Centrifugal pumps and blowers can be easily identified by their snail-shaped casing, 

called the scroll (Fig). They are found all around your home—in clothes washers and 

dryers, vacuum cleaners, leaf blowers, furnaces, etc. They are used in cars—the water 

pump in the engine, the air blower in the heater/air conditioner unit, etc. Centrifugal 

pumps are used in industry as well; they are used in building ventilation systems, 

washing operations, cooling ponds and cooling towers, and in numerous other 

industrial operations in which fluids are pumped. 

A schematic diagram of a centrifugal pump is shown in Fig. Note that a shroud 

often surrounds the impeller blades. Fluid enters axially through the hollow 

middle portion of the pump (the eye), after which it reach the rotating blades. It 

acquires tangential and radial velocity by momentum transfer with the impeller 

blades, by so-called centrifugal forces. 

The flow leaves the impeller after gaining both speed and pressure as it is flung 

radially outward into the scroll (also called the volute). As sketched in Fig, there 

by further increasing the fluid’s pressure, and to combine and direct the flow from 

all the blade passages toward a common outlet. As mentioned previously, if the 

flow is steady in the mean, if the fluid is incompressible, and if the inlet and outlet 

diameters are the same, the average flow speed at the outlet is identical to that at 

the inlet. Thus, it is not necessarily the speed, but the pressure that increases from 

inlet to outlet through a centrifugal pump. 
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Q (m
3

/s)  0.0028    0.0039     0.005      0.0056     0.0059   

Δh (m)      23.2           21.3  18.9     15.2        11.0   

There are three types of centrifugal pump, based on impeller blade geometry, as 

sketched in Fig: a) backward-inclined blades b) radial blades c) forward-inclined 

blades. Centrifugal pumps with backward-inclined blades (Fig. a) are the most 

common. These yield the highest efficiency of the three because fluid flows into and 

out of the blade passages with the least amount of turning.  

 

 

 

Exercise1: It is required to pump cooling water from storage pond to a condenser in a 

process plant situated 10 m above the level of the pond. (200 m of 74.2 mm id) pipe in 

between and the pump has the characteristics given below. The head loss in the 

condenser is equivalent to 16 velocity heads based on the flow in the 74.2 mm pipe. If 

the friction factor = 0.024, estimate the rate of flow and the power to be supplied to 

the pump assuming η = 0.5  

 

 

Hint: 
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CHAPTER SEVEN 

COMPRESSIBLE FLOW 
Introduction  

We have limited our consideration so far to flows for which density variations and 

thus compressibility effects are negligible. In this chapter, we lift this limitation and 

consider flows that involve significant changes in density. Such flows are called 

compressible flows, and they are frequently encountered in devices that involve the 

flow of gases at very high speeds. Compressible flow combines fluid dynamics and 

thermodynamics in that both are necessary to the development of the required 

theoretical background.  

 

Stagnation properties 

Enthalpy of a fluid defined per unit mass as ℎ = 𝑢 + 𝑃𝑣. Whenever the kinetic and 

potential energies of the fluid are negligible, as is often the case, the enthalpy 

represents the total energy of a fluid. For high-speed flows, the potential energy of the 

fluid is still negligible, but the kinetic energy is not. In such cases, it is convenient to 

combine the enthalpy and the kinetic energy of the fluid into a single term called 

stagnation (or total) enthalpy ho, defined per unit mass as 

ℎ𝑜 = ℎ +
𝑉2

2
                1 

Where h is the static enthalpy 

Notice that the two enthalpies are identical when the kinetic energy of the fluid is 

negligible. 

Consider the steady flow of a fluid through a duct such as a nozzle, diffuser, or some 

other flow passage where the flow takes place adiabatically and with no shaft or 

electrical work. Assuming the fluid experiences little or no change in its elevation and 

its potential energy, the energy balance relation (Ein = Eout) for this single-stream 

steady-flow device reduces to 

ℎ1 +
𝑉1
2

2
= ℎ2 +

𝑉2
2

2
         2 

ℎ𝑜1 = ℎ𝑜2 
Any increase in fluid velocity in these flow devices creates an equivalent decrease in 

the static enthalpy of the fluid. 

If the fluid were brought to a complete stop, then the velocity at state 2 would be zero 

and Eq. 2 would become 

ℎ1 +
𝑉1
2

2
= ℎ2 = ℎ𝑜2 

During a stagnation process, the kinetic energy of a fluid is converted to enthalpy 

which results in an increase in the fluid temperature and pressure. The properties of a 

fluid at the stagnation state are called stagnation properties (stagnation temperature, 

stagnation pressure, stagnation density, etc.). The stagnation state and the stagnation 

properties are indicated by the subscript o. 

 

When the fluid is approximated as an ideal gas with constant specific heats, its 

enthalpy can be replaced by 𝑐𝑝𝑇 and Eq. 1 is expressed as 

𝑐𝑝𝑇𝑜 = 𝑐𝑝𝑇 +
𝑉2

2
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𝑇𝑜 = 𝑇 +
𝑉2

2𝑐𝑝
 

Here, To is called the stagnation (or total) temperature, and it represents the 

temperature of an ideal gas attains when it is brought to rest adiabatically. 

The term V
2
/2cp corresponds to the temperature rise during such a process and is 

called the dynamic temperature.  

 

For example 

  
the dynamic temperature of air flowing at 100 m/s is 

(100 𝑚/𝑠)2

(2 ×  1005 𝐽/𝑘𝑔 · 𝐾)
=  5 𝐾 

Therefore, when air at 300 K and 100 m/s is 

brought to rest adiabatically its temperature rises 

to the stagnation value of 305 K (Fig). 

 

Note that for low-speed flows, the stagnation and static temperatures are practically 

the same. 

For ideal gases with constant specific heats, Po is related to the static pressure of the 

fluid by: 

𝑃𝑜
𝑃
= (
𝑇𝑜
𝑇
)
𝑘 (𝑘−1)⁄

 

The ratio of the stagnation density to static density is expressed as: 

𝜌𝑜
𝜌
= (
𝑇𝑜
𝑇
)
1 (𝑘−1)⁄

 

 

Example: air at a speed of 250 m/s and pressure of 54.05 kPa and its temperature is 

255.7 K. determine: the stagnation pressure 

Sol: 

𝑇𝑜 = 𝑇 +
𝑉2

2𝑐𝑝
 

𝑇𝑜 = 255.7 +
2502

2 × 1005
= 286.8 𝐾 

𝑃𝑜
𝑃
= (
𝑇𝑜
𝑇
)
𝑘 (𝑘−1)⁄

 

𝑃𝑜
54.05

= (
286.8

255.7
)
1.4 (1.4−1)⁄

 

𝑃𝑜 = 80.77 𝑘𝑃𝑎 

 

 

 

 

 



83 
 

 

Speed of sound and Mach number 

An important parameter in the study of compressible flow is the speed of sound c, (or 

the sonic speed), defined as the speed at which an infinitesimally small pressure wave 

travels through a medium. The pressure wave may be caused by a small disturbance, 

which creates a slight rise in local pressure. 

Which is related to other fluid properties as: 

𝑐 = √
𝑑𝑃

𝑑𝜌
 

𝑐 = √𝑘𝑅𝑇 

Where k is the specific heat ratio of the gas 𝑘 =
𝑐𝑝

𝑐𝑣
, and R is the specific gas constant 

𝑅 = 𝑐𝑝 − 𝑐𝑣.  

A second important parameter in the analysis of compressible fluid flow is the Mach 

number Ma. It is the ratio of the actual speed of the fluid (or an object in still fluid) to 

the speed of sound in the same fluid at the same state: 

𝑀𝑎 =
𝑉

𝑐
 

Note that the Mach number depends on the speed of sound, which depends on the 

state of the fluid.  

Fluid flow regimes are often described in terms of the flow Mach number. 

The flow is called sonic when Ma = 1, subsonic when Ma < 1, supersonic when Ma > 

1 and hypersonic when Ma >> 1 
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We note from the above Example that the flow area decreases with decreasing 

pressure down to a critical-pressure value where the Mach number is unity, and then it 

begins to increase with further reductions in pressure. The Mach number is unity at 

the location of smallest flow area, called the throat.  

Note that the velocity of the fluid keeps increasing after passing the throat although 

the flow area increases rapidly in that region. This increase in velocity past the throat 

is due to the rapid decrease in the fluid density.  

The flow area of the duct considered in this example first decreases and then 

increases. Such ducts are called converging–diverging nozzles. 

These nozzles are used to accelerate gases to supersonic speeds 

 

 

Variation of Fluid Velocity with Flow Area 

It is clear from above Example that the couplings among the velocity, density, and 

flow areas for isentropic duct flow are rather complex. 

We begin our investigation by seeking relationships among the pressure, temperature, 

density, velocity, flow area, and Mach number for one-dimensional isentropic flow. 

Consider the mass balance for a steady-flow process: 

𝑚 ̇ = 𝜌𝐴𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
Differentiating and dividing the resultant equation by the mass flow rate, we obtain 

𝑑𝜌

𝜌
+
𝑑𝐴

𝐴
+
𝑑𝑉

𝑉
= 0              𝑎 

From the energy balance 

ℎ1 +
𝑉1
2

2
= ℎ2 +

𝑉2
2

2
 

So  

ℎ +
𝑉 
2

2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Differentiate  

𝑑ℎ + 𝑉𝑑𝑉 = 0            𝑏 

Solving b for 
𝑑𝑉

𝑉
: 

𝑑𝑉

𝑉
= −

𝑑𝑃

𝜌𝑉2
 

Substitute 𝑏 in 𝑎 we get 
𝑑𝜌

𝜌
+
𝑑𝐴

𝐴
−
𝑑𝑃

𝜌𝑉2
= 0 

𝑑𝐴

𝐴
=
𝑑𝑃

𝜌𝑉2
−
𝑑𝜌

𝜌
 

𝑑𝐴

𝐴
=
𝑑𝑃

𝜌 
(
1

 𝑉2
−
𝑑𝜌

𝑑𝑃
)       𝑐 

Where: 
𝑑𝜌

𝑑𝑃
=

1

𝑐2
 

𝑑𝐴

𝐴
=
𝑑𝑃

𝜌𝑉2 
(1 − 𝑀𝑎2)             𝑑 

This is an important relation for isentropic flow in ducts since it describes the 

variation of pressure with flow area. We note that A, 𝜌, and V are positive quantities. 

For subsonic flow (Ma< 1), the term (1 − 𝑀𝑎2) is positive; and thus 𝑑𝐴 and 𝑑𝑃 must 

have the same sign. That is, the pressure of the fluid must increase as the flow area of 

the duct increases and must decrease as the flow area of the duct decreases. Thus, at 
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subsonic velocities, the pressure decreases in converging ducts (subsonic nozzles). 

And increases in diverging ducts (subsonic diffusers) 

In supersonic flow (Ma > 1), the term (1 − 𝑀𝑎2) is negative, and thus 𝑑𝐴 and 𝑑𝑃 

must have opposite signs. That is, the pressure of the fluid must decrease as the flow 

area of the duct increases. Thus, at supersonic velocities, the pressure decreases in 

diverging ducts (supersonic nozzles). And increases in converging ducts (supersonic 

diffusers) 

To accelerate a fluid, we must use a converging nozzle at subsonic velocities and a 

diverging nozzle at supersonic velocities. 

The highest velocity we can achieve by a converging nozzle is the sonic velocity, 

which occurs at the exit of the nozzle. 

(If we extend the converging nozzle by further decreasing the flow area, in hopes of 

accelerating the fluid to supersonic velocities, we are disappointed).  

Based on Eq. 𝑑, which is an expression of the conservation of mass and energy 

principles, we must add a diverging section to a converging nozzle to accelerate a 

fluid to supersonic velocities. The result is a converging– diverging nozzle. Where the 

Mach number increases as the flow area of the nozzle decreases, and then reaches the 

value of unity at the nozzle throat. The fluid continues to accelerate as it passes 

through a supersonic (diverging) section.  

Noting that 𝑚 ̇ = 𝜌𝐴𝑉for steady flow, we see that the large decrease in density makes 

acceleration in the diverging section possible. 

 

Property relations for isentropic flow of ideal gases 

Next we develop relations between the static properties and stagnation properties of 

an ideal gas in terms of the specific heat ratio k and the Mach number Ma. We assume 

the flow is isentropic and the gas has constant specific heats.  

We have: 

𝑇𝑜 = 𝑇 +
𝑉2

2𝑐𝑝
 

𝑇𝑜
𝑇
= 1 +

𝑉2

2𝑐𝑝𝑇
 

Noting that 𝑐𝑝 =  𝑘𝑅/(𝑘 −  1), 𝑐 =  √ 𝑘𝑅𝑇, and 𝑀𝑎 =  𝑉/𝑐 

𝑉2

2𝑐𝑝𝑇
=

𝑉2

2[𝑘𝑅/(𝑘 −  1)]𝑇
= (
(𝑘 −  1)

2
)(
𝑉2

𝑐2
) = (

(𝑘 −  1)

2
)𝑀𝑎2 

Substitution yields 
𝑇𝑜
𝑇
= 1 + (

(𝑘 −  1)

2
)𝑀𝑎2 

Which is the desired relation between To and T. The ratio of 

the stagnation to static pressure is obtained by: 

𝑃𝑜
𝑃
= (1 + (

(𝑘 −  1)

2
)𝑀𝑎2)

𝑘 (𝑘−1)⁄

 

The ratio of the stagnation to static density is expressed as: 

𝜌𝑜
𝜌
= (1 + (

(𝑘 −  1)

2
)𝑀𝑎2)

1 (𝑘−1)⁄

 

 

Numerical values of 
To

T
, 
Po

P
 and 

ρo

ρ
 are listed versus the Mach 

number in Table 2 for k = 1.4, which are very useful for practical compressible flow 

calculations involving air. 
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The properties of a fluid at a location where the Mach number is unity (the throat) are 

called critical properties and the ratios in Eqs. above through 

are called critical ratios when Ma = 1 (Fig). It is standard 

practice in the analysis of compressible flow to let the 

superscript (*) represent the critical values. Setting Ma = 1 

in Eqs. We get: 
𝑇∗

𝑇𝑜
= (

2

(𝑘 +  1)
) 

𝑃∗

𝑃𝑜
= (

2

(𝑘 +  1)
)
𝑘 (𝑘−1)⁄

 

𝜌∗

𝜌𝑜
= (

2

(𝑘 +  1)
)
1 (𝑘−1)⁄

 

 

These ratios are evaluated for various values of k and are 

listed in Table 3. 
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Effects of back pressure for nozzles flow 

1- Converging Nozzles 

Consider the subsonic flow through a converging nozzle as shown in Fig.  

The nozzle inlet is attached to a reservoir at pressure Pr 

and temperature Tr. The reservoir is sufficiently large so 

that the nozzle inlet velocity is negligible. 

Since the fluid velocity in the reservoir is zero and the 

flow through the nozzle is approximated as isentropic, 

the stagnation pressure and stagnation temperature of 

the fluid at any cross section through the nozzle are 

equal to the reservoir pressure and temperature, 

respectively. 

Now we begin to reduce the back pressure and observe 

the resulting effects on the pressure distribution along 

the length of the nozzle, as shown in Fig.  

1- If the back pressure Pb is equal to P1, which is equal to 

Pr, there is no flow and the pressure distribution is 

uniform along the nozzle. 

2- When the back pressure is reduced to P2, the exit plane 

pressure Pe also drops to P2. This causes the pressure 

along the nozzle to decrease in the flow direction. 

3- When the back pressure is reduced to P3 (= P*, which is 

the pressure required to increase the fluid velocity to the 

speed of sound at the exit plane or throat), the mass flow reaches a maximum value 

and the flow is said to be choked. Further reduction of the back pressure to level P4 or 
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below does not result in additional changes in the pressure distribution, or anything 

else along the nozzle length. 

Under steady-flow conditions, the mass flow rate through the nozzle is constant and is 

expressed as 

The mass flow rate through a nozzle is a maximum when Ma = 1 at the throat. 

Denoting this area by A* we obtain an expression for the maximum mass flow rate by 

substituting Ma=1 

 

For all back pressures lower than the critical pressure P*, the pressure at the exit plane 

of the converging nozzle Pe is equal to P*, the Mach number at the exit plane is unity, 

and the mass flow rate is the maximum (or choked) flow rate. Because the velocity of 

the flow is sonic at the throat for the maximum flow rate, a back pressure lower than 

the critical pressure cannot be sensed in the nozzle upstream flow and does not affect 

the flow rate. 
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2- Converging–Diverging Nozzles 

When we think of nozzles, we ordinarily think of flow passages whose cross-sectional 

area decreases in the flow direction. However, the highest velocity to which a fluid 

can be accelerated in a converging nozzle is limited to the sonic velocity (Ma = 1), 

which occurs at the exit plane (throat) of the nozzle. Accelerating a fluid to supersonic 

velocities (Ma > 1) can be accomplished only by attaching a diverging flow section to 

the subsonic nozzle at the throat. The resulting combined flow section is a 

converging–diverging nozzle 

Forcing a fluid through a converging–diverging nozzle is no guarantee that the fluid 

will be accelerated to a supersonic velocity. In fact, the fluid may find itself 

decelerating in the diverging section instead of accelerating if the back pressure is not 

in the right range. The state of the nozzle flow is determined by the overall pressure 

ratio Pb /Po. Therefore, for given inlet conditions, the flow through a converging–

diverging nozzle is governed by the back pressure Pb, as will be explained. 

Consider the converging–diverging nozzle 

shown in Fig. A fluid enters the nozzle 

with a low velocity at stagnation pressure 

Po.  

1- When Pb = Po (case A), there is no flow 

through the nozzle. This is expected since 

the flow in a nozzle is driven by the 

pressure difference between the nozzle 

inlet and the exit.  

2- When Po > Pb > PC, the flow remains 

subsonic throughout the nozzle, and the 

mass flow is less than that for choked flow. 

The fluid velocity increases in the first 

(converging) section and reaches a 

maximum at the throat (but Ma < 1). 

However, most of the gain in velocity is 

lost in the second (diverging) section of the 

nozzle, which acts as a diffuser. The 

pressure decreases in the converging 

section, reaches a minimum at the throat, 

and increases at the expense of velocity in 

the diverging section. 

3- When Pb = PC, the throat pressure becomes 

P* and the fluid achieves sonic velocity at 

the throat.  

4- When PC > Pb > PE, the fluid that achieved 

a sonic velocity at the throat continues 

accelerating to supersonic velocities in the 

diverging section as the pressure decreases. 

This acceleration comes to a sudden stop, 

however, as a normal shock develops at a section between the throat and the exit 

plane, which causes a sudden drop in velocity to subsonic levels and a sudden 

increase in pressure. The fluid then continues to decelerate further in the remaining 

part of the converging–diverging nozzle.  

Flow through the shock is highly irreversible, and thus it cannot be approximated as 

isentropic. 
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The normal shock moves downstream away from the throat as Pb is decreased, and it 

approaches the nozzle exit plane as Pb approaches PE. 

When Pb = PE, the normal shock forms at the exit plane of the nozzle. 

The flow is supersonic through the entire diverging section in this case, and it can be 

approximated as isentropic. However, the fluid velocity drops to subsonic levels just 

before leaving the nozzle as it crosses the normal shock.  

5- When PE > Pb, the flow in the diverging section is supersonic, and the fluid expands to 

PF at the nozzle exit with no normal shock forming within the nozzle.  

 

Example1: Air in an automobile tire is maintained at a 

pressure of 220 kPa (gage) in an environment where the 

atmospheric pressure is 94 kPa. The air in the tire is at the 

ambient temperature of 25
o
C. A 4-mm-diameter leak develops 

in the tire as a result of an accident (Fig). Approximating the 

flow as isentropic, determine the initial mass flow rate of air 

through the leak. 

 

 

 

 

 

Example2: Air enters a converging–diverging nozzle, 

shown in Fig, at 1.0 MPa and 800 K with negligible 

velocity. The flow is steady, one-dimensional, and 

isentropic with k = 1.4. For an exit Mach number of Ma = 2 

and a throat area of 20 cm
2
, determine (a) the throat 

conditions, (b) the exit plane conditions, including the exit 

area, and (c) the mass flow rate through the nozzle. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


